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Abstract

In many real-world scenarios, experts must convey complex information using a

limited number of messages. This paper explores how an expert’s ability to persuade

changes with the availability of messages. We develop a geometric representation of the

expert’s payoff when using a limited number of messages. We identify bounds on the

value of an additional signal for the sender. In a special class of games, the marginal

value of a signal increases as the receiver becomes more difficult to persuade. Moreover,

we show that an additional signal does not directly translate into more information

in equilibrium, and the receiver might prefer coarse communication. This suggests

that regulations on communication capacity have the potential to shift the balance of

power from the expert to the decision-maker, ultimately improving welfare. Finally, we

study the geometric properties of optimal information structures and show the sender’s

problem can be simplified to a finite algorithm.
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1 Introduction

In many instances of communication, the information held by a party is often much more

complex than the language they can use to convey it. For example, credit rating agencies

employ coarse ratings to describe the riskiness of financial assets to their clients, medical

professionals often use simplified health charts to communicate complex patient information,

and governmental agencies utilize coarse grades to assess hygiene practices in restaurants.

Additionally, grading systems in education, product ratings in online reviews, traffic signals,

nutritional labels on food packaging, sports statistics, and project management status updates

further exemplify instances where coarseness is inherent. In all of these examples, experts

communicate about a complex subject by using limited number of messages.

How does the persuasiveness of an expert evolve in the face of these constraints? This

is the question at the heart of our investigation. Our primary objective in this study is

not to delve into why coarseness arises but, rather, to gain insights into its implications for

communication. Specifically, we aim to determine how coarse communication compares to

richer communication in influencing outcomes and the well-being of the parties involved. We

focus on settings where the expert has commitment power and utilize the Bayesian persuasion

framework of Kamenica and Gentzkow (2011) to model these interactions.

Without constraints on the available messages, the only obstacle to effective communi-

cation is the credibility of the expert. In the canonical Bayesian persuasion framework, the

expert can implement any combination of actions, as long as the convex combination of the

posterior beliefs induced by the expert’s recommendations equal the prior belief of the receiver.

When the expert has access to a limited set of messages, coarseness introduces an addi-

tional challenge. The expert is restricted to making a fixed number of recommendations while

still adhering to the Bayesian rationality constraint. This limitation results in the prior belief

being represented by a convex combination of only a restricted set of posterior beliefs.

We focus on these constrained convex combinations, and show how the concavification

approach, the canonical characterization of attainable payoffs, can be seamlessly adapted to

our context of coarse communication. This adaptation provides a visual representation of

how the expert’s utility changes concerning the number of available messages.

The expert performs worse when her communication capacity is constrained and she values

access to additional messages. We study how much the expert values acquiring an extra

message, and provide a partial answer by establishing bounds on the marginal value of a

message that applies to all persuasion games. This result is derived by linking the sender’s

optimal messages with finer and coarser communication.

The upper-bound shows that in settings with large number of states and actions, the

marginal value of a message becomes a relatively small fraction of the payoff achievable

through richer communication. Approaching unconstrained communication, having access to
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more messages does not significantly change the sender’s payoff. It’s crucial to note that this

does not imply the marginal value of a message is necessarily a decreasing function; and it

can be non-monotonic.

To offer more precise insights into the value of an additional message, we analyze a class of

games characterized by a specific preference structure termed belief-threshold games. In these

games, the receiver has a unique preferred action for each state, taking the corresponding

action only if their posterior belief for that state is sufficiently high. Additionally, there’s a

default action chosen when the prior belief is uncertain, which is the sender’s least preferred

action. These preferences capture various economic settings that have been the focus of

prior research, especially in the context of state-independent cheap talk, such as buyer-seller

interactions involving different goods (Chakraborty and Harbaugh, 2010) and advice-seeking

settings involving multiple possible actions (Lipnowski and Ravid, 2020).

In belief-threshold games, the marginal value of a message increases for skeptical priors

that are maximally distant from the action-belief thresholds and decreases for biased priors

that are already close to one of the belief thresholds. When the message space is constrained

and the priors are skeptical, the sender can only meet Bayes plausibility by inducing their

least preferred action with positive probability. For highly skeptical priors, this probability

must increase with restrictions on communication capacity, leading to a higher value from an

additional message.

In certain cases coarseness is inevitable, whereas in others, it is a deliberate decision.

Consider a patient’s interaction with a doctor. The patient might intentionally limit the

doctor’s options to binary decisions, such as whether to proceed with a specific treatment or

not. We show that a rational advice-seeker might strategically opt to restrict the advice-giver.

This insight stems from the surprising observation that limited access to messages does not

consistently result in reduced information transmission in equilibrium.

We show that, for a class of games, the expert communicates in a way that provides

more information about the states critical to the decision-maker’s choice when the number of

available messages is reduced. Consequently, the decision-maker may benefit from limiting the

expert’s communication capacity. This suggests that regulations on communication capacity

can potentially shift the balance of power from the expert to the decision-maker and enhance

overall welfare. We study this with an example in the context of targeted advertising.

We provide a simple proof of the existence of an optimal messaging strategy for arbi-

trary message space. We identify geometric properties of the sender’s optimal strategy using

techniques from affine geometry, and expand the geometric insights offered in the literature

(Lipnowski and Mathevet, 2017). Our results demonstrate how the techniques employed in

the literature can be naturally extended, without the need to assume a rich message space.

We discuss how our approach can be extended to other settings using belief-based approach,

such as cheap talk with state-independent sender preferences (Lipnowski and Ravid, 2020).
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Relationship to the Literature

Questions relating to limitations of language and implications of coarse communication have

been studied in common-interest coordination games (Blume, 2000; Blume and Board, 2013;

De Jaegher, 2003) and cheap talk games (Jager, Metzger and Riedel, 2011; Hagenbach and

Koessler, 2020).1 The primary distinction that sets our work apart from this line of research

is the presence of misaligned preferences between the sender and the receiver, and the sender’s

ability to commit to a messaging strategy. When players share common interests, coarseness

limits the amount of information that can be transmitted and makes both players worse-

off. However, we show that when players have misaligned preferences, coarseness does not

necessarily lead to reduced information transmission in equilibrium and it can increase the

payoff of the uninformed party at the expense of the informed party.

Limitations on the sender’s ability to provide precise information can be modeled in other

ways. One possible disruption to communication quality is exogenous noise. In the models

that entertain this possibility, messages chosen by the sender can be misinterpreted due to the

imperfections in the channel (Akyol, Langbort and Basar, 2016; Le Treust and Tomala, 2019;

Tsakas and Tsakas, 2018). Another approach is defining a cost function over the amount of

information conveyed in the message (i.e. entropy costs), and imposing these costs on the

utility of the sender (Gentzkow and Kamenica, 2014) or the receiver (Wei, 2018; Bloedel and

Segal, 2018). We discuss how our model differs from these approaches in Section 7.

In terms of the mathematical techniques we develop, our work is also related to Lipnowski

and Mathevet (2017) and Dughmi, Kempe and Qiang (2016). Lipnowski and Mathevet (2017)

characterize the properties of optimal information structures in message-rich settings relying

on extremal representation theorems from convex analysis. We extend their results to settings

with general message spaces. Dughmi, Kempe and Qiang (2016) also analyze limited mes-

sage spaces, but take a computational perspective and focus characterizing the algorithmic

complexity of approximating optimal sender utility.

2 Leading Example: Targeted Advertising

We begin by analyzing a simple setting with three states, in order to visualize our key insights

using a utility function defined over the space of posterior beliefs for the receiver.2

Consider a scenario where various types of customers arrive at an online platform based on

1Other notable examples of coarse information include Wilson (1989); McAfee (2002); Hoppe, Moldovanu
and Ozdenoren (2011); Ostrovsky and Schwarz (2010); Cremer, Garicano and Prat (2007); Lipman (2009);
Harbaugh and Rasmusen (2018).

2Note that our analysis of coarse communication becomes interesting only if the state space (or the action
space, depending on the binding constraint) has at least three elements. If the state space has two elements,
constraining the message space to be smaller leads to no information transmission since the sender will have
access to only one message.
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a known distribution. An advertiser observes diverse characteristics (demographics, location,

browsing history, etc.) of incoming customers and must decide which type of advertisement

to display based on these observations.

We assume that different customer types correspond to three distinct segments of the

population. We represent these three segments as the state space Ω = {ω1, ω2, ω3}. The

state ω1 represents preferences and tastes that are not aligned with the product sold by the

advertiser, ω2 represents weak alignment, and ω3 represents strong alignment. We assume the

prior µ0 = (0.65, 0.1, 0.25), which is a vector representing the fraction of ω1, ω2 and ω3 type

customers in the population.

Our example is the three-dimensional extension of the examples presented in Rayo and

Segal (2010) and Kamenica and Gentzkow (2011), where the state is an underlying random

‘prospect’ capturing the quality of the match between the product characteristics and the

customer.

The advertiser learns the state of the world, or the quality of the prospect, by observing

the characteristics of the customer. The state is unknown to the customer, who does not

know the features of the product sold by the advertiser ex-ante. Formally, the sender’s

(advertiser’s) messaging strategy is a map from Ω to distributions over the set of available of

messages ∆(S). In practical terms, this means the advertiser selects a distribution over various

types of advertisements based on the observed characteristics of a customer. The commitment

assumption is consistent with advertisers setting up a targeted advertising campaign specifying

which ad to show to each type of customer.

The actions available to the receiver are represented by the set A = {a3, a2, a1, a0}, and
the optimal action depends on their beliefs. The actions correspond to different levels of

engagement with the advertisement. Action a3 represents a purchase, which is optimal if the

customer’s preferences match the product sold by the advertiser (ω3). Action a2 represents

a click without a purchase, which is optimal when there is a weak match (ω2). Action a1

represents ignoring or hiding the ad, which is optimal when the customer’s preferences are not

aligned to the product (ω1). Default action a0 represents an impression with no interaction,

which is the optimal when the receiver is sufficiently uncertain about the state.3

The sender only cares about the action taken by the receiver, and not the state. Hence, the

sender utility function is constant when the receiver’s action is fixed. The sender prioritizes

engagement, meaning a purchase (a3) or a click (a2) is preferred over no engagement (a0)

or hiding the ad (a1). For simplicity, we assume that receiver actions a3 and a2 yield equal

utility to the sender, while a1 and a0 are the least preferred actions.4 We plot the sender and

3In this example, we suppose that for every state there exists a unique optimal action and there is a unique
safe action when there is large uncertainty. Similar preferences are studied in the literature for different
contexts (Sobel, 2020; Chakraborty and Harbaugh, 2010; Lipnowski and Ravid, 2020).

4The assumption of equal utilities is for visual clarity and can be easily relaxed. The results generalize
to the case with unequal utilities for different actions. We set receiver utility to be uR(ai, µ) = ⟨βi, µ⟩ for
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Figure 1: Action regions (Left), and the receiver (Middle) and sender utility over the belief
space (Right). We plot sender and receiver utility over the simplex that represents receiver
beliefs. The black dot and the black line represent the location of the prior.

receiver utility in Figure 1.

Given access to three messages (the possibility of showing three different ads depending

on customer characteristics), the advertiser induces actions a1, a2 and a3. The optimal adver-

tisement strategy induces the posteriors {(1, 0, 0), (1/3, 2/3, 0), (1/3, 0, 2/3)} with respective

probabilities (0.475, 0.15, 0.375). This strategy reveals the state ω1 with message s1, but sends

less precise messages s2 and s3 that mix states ω2 and ω3 with ω1. The advertiser strategi-

cally induces the least convincing belief that renders the receiver indifferent between actions

a0 and a2 (or a3). This choice maximizes the ex-ante probability that the receiver will opt for

actions a2 or a3. Moreover, this optimal solution can be easily identified by examining the

concavification of the sender’s value function, as outlined by Kamenica and Gentzkow (2011).

However, if the sender is restricted to using only two messages, the optimal strategy cannot

be determined through the standard concavification method. In this case, the sender can only

utilize convex combinations of at most two posterior beliefs to represent the prior. This means

that the sender can induce two actions, while adhering to the Bayesian rationality constraint

of the receiver.

The sender aims to maximize the likelihood that the receiver selects the action more

preferable to her while minimizing the probability of the receiver choosing a less preferable

action. Geometrically, this implies that the search can be confined to line segments that pass

through the prior (Bayes plausibility) and supported on the ‘corners’ and ‘edges’ of the set of

beliefs that lead to a fixed action. We illustrate some examples in Figure 2.5

some coefficient vectors βi, where ⟨·, ·⟩ denotes scalar product. We specify the β coefficients so that when the
belief µ = (µ1, µ2, µ3) has coordinate µi > Ti, the action ai is optimal. Namely, for a given β0 = [β1

0 , β
2
0 , β

3
0 ]

vector for the action a0, and k1, k2, k3, representing how much the receiver prefers actions a1, a2, a3 compared
to a0, we define the remaining vectors βi as : βj

i = βj
0 + kj if j = i, and βj

0 − Tj

1−Tj
kj if j ̸= i. For this

specific example, we draw and solve for the optimal sender strategy with the receiver preferences defined
using β0 = [−250/3, 500/3, 500/3], β1 = [0, 0, 0], β2 = [−150, 200, 100], β3 = [−150, 100, 200].

5For simplicity of illustration, we parameterize preferences such that the action region boundaries are
parallel to the simplex boundaries, and the sender utility is state-independent. Our conclusions in this section
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Figure 2: Two-message information structures drawn over the belief space. The black dot
represents the prior, and the dashed red and black lines represent information structures.

As a preview of our results, observe that the posteriors demonstrated in Figure 2 include

at least one ‘corner’ (outer point) posterior from the set of beliefs that induce a fixed action.

Any alternative combination of posteriors can be rotated to either increase or decrease the

probability of one of the induced actions. We generalize this geometric property to higher

dimensions and different orders of extreme points.

Figure 3: Optimal information structures with 3 messages (blue, left) and 2 messages (red,
right) shown over the sender utility function. The expected sender utility is the point at
which the information structures intersect with the black line representing the prior.

Sender’s optimal strategy induces actions a3 and a1, by inducing posteriors (1, 0, 0) and

(0.07, 0.27, 0.66) with respective probabilities 0.63 and 0.37. This information structure max-

imizes the probability of the action 3 (a purchase, which is the most preferred action) while

minimizing the probability of action 1 (which is the least preferred action). Geometrically, this

information structure minimizes the ratio of the distance between the prior and the posterior

that leads to the desired action (a3), and the distance between the prior and the posterior

that leads to the undesired action (a1). Sender utility and the optimal information structures

with three and two messages are shown in Figure 3.

are not restricted to this case.
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Figure 4: Receiver’s Bernoulli utility over the belief space (yellow function). The beliefs
induced by the optimal 3-message solution (blue) and the 2-message solution (red) to the
sender’s problem. Expected receiver utility is the point at which the information structures
intersect with the black line representing the prior.

We plot the receiver’s utility under the equilibrium with three messages and two messages

in Figure 4. We observe that the receiver has a higher payoff in the equilibrium with two

messages. This might appear counter-intuitive at first sight, given that the receiver benefits

from more information. In fact, the receiver preferences always exhibit convexity over the

belief space. However, as depicted in Figure 3 constraining the cardinality of the message

space doesn’t necessarily lead to less precise posteriors being induced at the equilibrium—the

optimal information structures for three and two messages are not Blackwell-comparable.6

To grasp the intuition behind this result, note that the sender is solely concerned with

the implemented action. However, the receiver prefers more precise posteriors in specific

directions. Confining the sender’s targeting ability leads to an optimal messaging strategy

that produces more precise posteriors in the direction favored by the receiver (in the direction

of ω2 and ω3). This suggests that customers would be better off if the targeting capabilities

of the advertiser are constrained. Naturally, in more general settings, if the preferences of the

two agents are perfectly aligned, the receiver would never wish to limit the sender.

In the appendix, we characterize the conditions on receiver utility under which coarse

communication enhances their well-being.7 Essentially, if the customers gain high enough

utility from reducing the uncertainty about certain specific states, limiting the targeting

capability of the advertiser would make them better off.

The utilities achievable by the sender for any prior belief can be described using a modified

concavification method. We do this by plotting the set of points that can be represented as

6It should be noted that increasing the number of allowed message realizations can never result in the
optimal information structure being less informative in the Blackwell sense.

7As long as the slope parameters β2
0 , β

3
0 for the set of beliefs inducing a0 are high enough, the receiver

will prefer the 2-message outcome over the 3-message outcome. Generally for the parametric preferences we
defined, this condition can be written as β2

0 + δβ3
0 > 0 with δ depending on the prior belief. For our example,

δ ≈ 0.85.
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Figure 5: Maximum achievable sender utility with 3 messages (Left) and 2 messages (Right).
The black line correspond to the prior belief.

the convex combination of at most 2 points from the graph of the sender’s value function.

This technique allows us to represent the achievable utilities for the sender as a function of

the prior in Figure 5.

The sender’s utility is lower with two messages, and she values access to additional mes-

sages, or increased targeting ability. The marginal value of a message for any prior belief

can be calculated through the difference of the two functions in Figure 5. We see that there

are priors where the message space constraint is not binding, and the value of an additional

message is zero. These correspond to priors where the probability of state ω2 and ω3 are

high, so the sender can satisfy the Bayes plausibility constraint by inducing desirable actions

a2 (click) and a3 (purchase) without inducing the undesirable a1 (hide ad). This shows that

having access to a third message is especially valuable for priors where the sender has to

induce their least favorite action a1 frequently in a 2-message information structure.

3 The Model

We study the canonical Bayesian persuasion game of Kamenica and Gentzkow (2011) extended

to environments with limited access to messages.

Let Ω be a (finite) state space and A be a compact action space. There are two agents.

We call them the sender (she) and the receiver (he). They share a prior belief about the state

of the world, µ0 ∈ ∆(Ω).8 Both players have utility functions that depend on the state and

the receiver’s action a ∈ A, respectively denoted by: uS, uR : Ω× A → R for the sender and

the receiver.

The sender uses a language (message space) S, a finite set of messages available to her, to

communicate the state. Critically, our only deviation from the canonical Bayesian persuasion

8We extend our results to when players do not share a common prior, following the approach of Alonso
and Camara (2016).
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is to assume that the language is coarse, i.e. |S| = k with 2 ≤ k < min{|Ω|, |A|}.9

The game starts with the sender committing to a messaging strategy π : Ω → ∆(S). For

convenience, we also denote a messaging strategy as a collection of conditional probability

mass functions {π(· | ω)}ω∈Ω. We denote the set of all messaging policies with Π.

Once π is chosen and announced to the receiver, a state ω is drawn from Ω according

to µ0. Sender sends a message according to the committed messaging strategy π(s|ω) and

communicates the realized message s with the receiver. Observing s, the receiver forms a

posterior µs and chose an action â(µs) ∈ argmaxa∈A Eω∼µsu
R(a, ω).

The existence of â(µs) follows from A being compact and u(a, ω) being continuous. To

have a unique selection of â(µs), we focus on sender-preferred equilibria. More precisely, if the

receiver is indifferent between multiple actions, we assume that the indifference is resolved by

picking the action that is preferred by the sender. If there are multiple such elements, we fix

an arbitrary element from the set of maximizers as the choice â(µs).
10

Given the receiver’s best response, â(·), the sender’s expected utility from committing to

a messaging strategy π is given by:

US(π) :=
∑
ω∈Ω

µ0(ω)
∑
s∈S

π(s | ω)uS(â(µs), ω).

The optimal messaging strategy π maximizes US(π) over Π. As in Kamenica and Gentzkow

(2011), we can transform the problem of choosing a messaging strategy π : Ω → ∆(S)

to choosing an information structure τ ∈ ∆(∆(Ω)). Formally, every messaging strategy π

induces a distribution τ with support {µs}s∈S:11

τ(µs) =
∑
ω′∈Ω

π (s | ω′)µ0 (ω
′) .

However, any arbitrary distribution in τ ∈ ∆(∆(Ω)) cannot be induced by a messaging

strategy π. An information structure τ induced by a messaging strategy π must satisfy two

restrictions. First, Bayesian updating necessitates that the expected posterior belief of the

receiver must equal to her prior belief. This is commonly referred a the Bayes plausibility

constraint and formally stated as
∑

µs∈supp (τ) µsτ(µs) = µ0.

Second constraint is special to our focus on coarse communication. If |S| = k the sender

can induce at most k different posteriors, i.e. supp (τ) ≤ k.

9The setting where |S| = k = 1 is trivial since there will be no information transmission.
10The literature on Bayesian persuasion generally focuses on sender-preferred equilibrium for existence.

Lipnowski and Ravid (2020) studies the robustness of this assumption.
11Formally there might be multiple messages that induce a posterior µ̃. To minimize the notational clutter,

we do not entertain this possibility in the main text. The only difference is that the formula for τ(µ̃) has an
additional sum

∑
s:µs=µ̃.
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We denote the set of all distributions τ that can be induced by a messaging strategy π by:

I(k, µ0) =

{
τ ∈ ∆(∆(Ω)) :

∑
µs∈supp (τ)

µsτ(µs) = µ0 and supp (τ) ≤ k

}
.

Let ûS(µs) = Eω∼µsu
S(â(µs), ω) and similarly define ûR(µs) for the receiver. ûS is the

sender’s value function (as a function of the receiver’s posterior µs). We use this to write the

sender’s information design problem as the following constrained optimization problem:

max
τ∈∆(∆(Ω))

Eµs∼τ [û
S(µs)] subject to τ ∈ I(k, µ0). (1)

We first show that the existence of a solution to the sender’s problem in equation (1).12

Proposition 1. There exists an optimal information structure τ solving the optimization

problem in equation (1).

The result follows from an extension of the existence proof of Kamenica and Gentzkow

(2011). Their result established that ûS is upper semi-continuous and attains a maximum

over all Bayes plausible information structures. We additionally show that I(k, µ0) is a

closed subset of all Bayes plausible information structures in the relevant topological space.

This provides compactness of the domain in which the objective is considered. The result

immediately follows from the extreme value theorem.

4 Set of Achievable Utilities

We start by providing a geometric characterization of the highest achievable sender payoffs.

Let CH(ûS) denote the convex hull of the graph of ûS.13 The seminal result of Kamenica

and Gentzkow (2011) shows that if (µ0, z) ∈ CH(ûS) then the sender payoff z is achievable

by an information structure τ when the receiver prior is µ0. However, a prior-payoff pair

(µ0, z) ∈ CH(ûS) might not be feasible under coarse communication if the corresponding τ

has a support with cardinality larger than k.

We focus on prior-payoff pairs (µ0, z) that are admissible under coarse communication.

Given a set Λ and a positive integer k, the k-convex hull of Λ is the the set of all points that

can be represented as the convex combination of at most k points in the set Λ and denote

this as cok(Λ).
14

12Throughout the paper, we assume that there are some gains to sending information i.e. there is some τ
such that Eτ (û

S) ≥ ûS(µ0). The other case is trivial and the sender always prefers sending no information.
13Since ûS : ∆(Ω) → R, we can represent any belief µ with |Ω| − 1 = n − 1 dimensions. Thus, formally

CH(·) : Rn−1 × R → Rn−1 × R is an operator taking a function whose graph can be represented in Rn, and
returning the convex hull of the graph of the function in Rn that is ûS 7→ co(graph(ûS)).

14We provide a formal definition of k-convex hull (Definition 2) in the appendix.
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We start with some elementary observations for this object. Using the Fenchel and Bunt’s

strengthening of Caratheodory’s theorem it follows that whenever n ≥ k and Λ is a connected

set cok(Λ) coincides with co(Λ).15 It is immediate that cok is monotone in k, i.e. cok(Λ) ⊆
cok′(Λ) if k ≤ k′.

We similarly define the k-convex hull of the graph of sender utility ûS as CHk(û
S). By

following the classical arguments in the literature, it can be shown that if (µ0, z) ∈ CHk(û
S),

then there exists an information structure τ ∈ I(k, µ0). Thus, the set of payoffs sender can

achieve, when the prior is µ0 and there are k messages, is given by:

V (k, µ0) := sup{z : (µ0, z) ∈ CHk(û
S)}.

Formally, we can state this result in Proposition 2.

Proposition 2. Let τ be a solution to equtation (1) then V (k, µ0) = Eτ û
S.

This gives us the natural generalization of the concavification result to arbitrary mes-

sage spaces, which we call k-concavification. Similar to the concavification approach, k-

concavification can be used to identify the optimal information structure when plotted. An

example is provided in Section 2 and Figure 5. We discuss the broader scope of this approach

and explore how it can be applied to other problems where the concavification technique is

employed, later in the paper.

5 Marginal Value of a Message

An immediate corollary to the observed monotonicity of cok is that V (k, µ0) weakly increases

in k. Thus, the sender values access to more messages. This begs the question: how much

does the expert value acquiring an extra message?

We can describe the marginal value of a signal by V (k+1, µ0)− V (k, µ0). First note that

the marginal value of a message is zero whenever the language is rich, i.e. k ≥ min{|Ω|, |A|}.
This follows from the previous observation that cok(Λ) = co(Λ) if k ≥ min{|Ω|, |A|}. So,

additional messages are valuable to the sender only if the communication is coarse.

To see how the marginal value of a message can change, consider a communication game

where the sender cannot induce all combinations of k-actions. If maintaining Bayes plausibility

with lower dimensional messages requires inducing a posterior inducing a lower-payoff yielding

action, then the sender would be willing to pay more for increased precision in communication.

Unfortunately, the analysis of how optimal information structures change with respect to

number of messages is highly intractable. However, we can still partially characterize the

15For a non-connected Λ this holds for n + 1 by Carathedory’s Theorem. See the discussion of Kamenica
and Gentzkow (2011) on the rich message space assumption.
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expert’s value for acquiring an extra message by establishing bounds on the marginal value

of a message.16

Proposition 3. Let |S| = k ≥ 2, then V (k, µ0) − V (k − 1, µ0) ≤ 2
k
V (k, µ0), or equivalently

k−2
k
V (k, µ0) ≤ V (k − 1, µ0) ≤ V (k, µ0).

The 2
k
factor on the upper bound implies that in Bayesian persuasion games with large

state and action spaces, the marginal value of a message cannot be too high as we approach

rich communication. However, the result does not necessarily imply monotonicity, as we will

see through our analysis in the next section. Moreover, this inequality can be recursively

applied to get bounds on the value of attainable payoffs with any k number of messages.

The proof relies on creating alternative k − 1 message information structures from the

k-optimal information structure τ ∗k and comparing them to the k − 1-optimal information

structure τ ∗k−1. We observe that τ ∗k can be ‘collapsed’ to get an information structure with k−1

messages. By optimality of τ ∗k−1 new information structures must provide weakly less utility

compared to τ ∗k−1. We can construct k different k−1 dimensional information structures using

this method by combining the posteriors that are in the support of τ ∗k pairwise and leaving

the rest of the posteriors the same as τ ∗k . The utilities provided by these new information

structures are related to V ∗(k, µ0), because they contain k − 2 posteriors which are also in

the support of τ ∗k .

We can use Proposition 3 to provide an upper and lower bound on the payoffs attainable

using k messages as a function of the payoff attainable with full communication (k = |Ω|) and
binary communication (k = 2).

Corollary 1. k(k−1)
2

V (2, µ0) ≥ V (k, µ0) ≥ (k−1)k
(k+1)(k+2)

V (|Ω|, µ0) for every k > 2.

The bounds in Corollary 1 are obtained by iteratively applying bounds in Proposition 3.

This establishes a relationship between achievable payoffs with intermediate communication

with the payoffs with unlimited communication and binary communication.

5.1 Belief Threshold Games

We focus on a special class of preferences in this section to gain sharper insights on the

marginal value of a message. We assume that the sender’s utility only depends on the action

and not on the state, and the receiver’s default action under the prior is the least preferred

action for the sender.

16The statement of Proposition 3 is valid for uS ≥ 0. This assumption is ‘without loss of generality’, as in
the case where uS can be negative, the utility function can be translated to achieve a minimum of zero, or
we can simply change the statement by adding a constant proportional to the minimum of sender utility. We
provide the general statement in the proof.
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Examples involving these kinds of preferences have received interest in previous work. For

instance, they have been used to capture buyer-seller interactions where the seller is trying to

convince the buyer to purchase any one of multiple different products, and the buyer’s default

action is buying nothing (Chakraborty and Harbaugh, 2010), or a think tank designing a

study to persuade a politician to enact one of many possible policy reforms, where the default

action is a continuation of status quo (Lipnowski and Ravid, 2020). Similar preferences are also

studied by Sobel (2020) to analyze the conditions under which deception in communication

will lead to loss in welfare.

We study a parametric formulation that captures these settings. For every action, there

is a belief threshold above which the receiver finds it optimal to take the action. The default

action is optimal if none of these thresholds are met. For a simple demonstration, we study

the case where Ω = {ω1, ω2, ω3} and A = {a0, a1, a2, a3}. Formally, the preferences can be

described with the following preference structure:

uR(a, ωi) =


0 if a = a0
1−T
T

if a = ai ∀i ∈ {1, 2, 3}

−1 if a ̸= ai ∀i ∈ {1, 2, 3}

.

For each state ωi, matching the state with action ai is optimal, and mismatching the state

with action aj is costly (with i ̸= j > 0) . The receiver can also take a safe action a0 and

obtain a payoff of zero. Under this specification of preferences, action ai is taken by the

receiver if and only if the posterior probability of state ωi is at least T .

Sender’s preferences are such that uS(a0, ω) = 0 and uS(ai, ω) = 1 for every i > 0. So,

the sender only cares about the action, and not the realized state. In this setup, the sender

wants to persuade the receiver to take one of the non-default actions ai (with i ̸= 0) and the

parameter T can alternatively be interpreted as the ‘difficulty’ of persuading the desirable

action to be taken by the receiver.

Given these preferences, it is immediate that the sender can attain a payoff of 1 by using

information structures with three messages.17 On the other extreme, with only a single

message the sender’s payoff is immediately determined by the action under the prior belief.

We proceed by analyzing the non-trivial intermediate case with two messages and focus

on priors µ0 for which the the default action for the receiver is the safe action. Let ∆T be

the set of beliefs where two-message information structures attain a lower payoff compared

to three-message information structures. Formally, we define ∆T := {µ0 ∈ ∆(Ω) : V (2, µ0) <

V (3, µ0)}. We characterize the threshold T such that this set is non-empty.

17Any prior µ0 can be represented as a convex combination of most extreme beliefs i.e. the information
structure induces µ1 = (1, 0, 0) inducing a1, µ2 = (0, 1, 0) inducing a2 and µ3 = (0, 0, 1) inducing a3; and
corresponding probabilities for those posteriors are µ0(ω1), µ0(ω2), and µ0(ω3).
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Lemma 1. ∆T ̸= ∅ if and only if T > 2
3
.

Figure 6: On the left, we have the action threshold T = 2
3
so it is possible to maintain

Bayes plausibility without inducing action 0 for any prior. On the right, T > 2
3
, so for the

prior beliefs in the blue shaded region, the sender has to mix a0 and another action when
constrained to 2 messages. The blue shaded region in the right figure corresponds to ∆T .

For thresholds T ≤ 2
3
, two-dimensional information structures suffice for achieving max-

imal utility, and value of an additional signal is zero. We restrict attention to cases where

this value is positive. We characterize the range of the utilities that can be attained by

two-message information structures in Lemma 2.

Lemma 2. Let T > 2
3
and µ0 ∈ ∆T . Then,

1
3T

< V (2, µ0) <
2T−1
T

< V (3, µ0) = 1.

Using this result, we can show that depending on the location of the prior the marginal

value of a message can be a function with increasing or decreasing differences.

Corollary 2. Let T > 2
3
and µ0 ∈ ∆T . There exists µ0, µ

′
0 ∈ ∆T such that:

V (3, µ0)− V (2, µ0) > V (2, µ0)− V (1, µ0) and V (3, µ′
0)− V (2, µ′

0) < V (2, µ′
0)− V (1, µ′

0)

Since V (3, µ0) = 1 and V (1, µ0) = 0, the statement can be equivalently stated in terms of

comparing V (2, µ0) with
1
2
. The priors for which the marginal value of a message is increasing

are the ones that are the furthest away from the desirable action regions. The only way to

induce favorable actions with these priors is by also inducing the default action with high

probability, getting an expected utility below 1
2
. Therefore, the value of the second message

is also below 1
2
. Getting access to the third message allows the sender to maintain Bayes

plausibility by not inducing the default action, guaranteeing a payoff of 1. Hence, the value

of the third message is higher than 1
2
.
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On the other hand, for priors that are already close to one of the action regions, the

marginal value of an additional message is a decreasing function. Intuitively, if the receiver

is already leaning towards taking an action, it is easy to induce that action with a high

probability. This ensures that the sender can get an expected payoff above 1
2
, making the

value of a second message higher than the value of a third message.

6 Properties of Optimal Information Structures.

In practical applications, the implementation of optimal information structures rely on the

ability to compute the concavification of the sender’s utility function. This computational

task is known to be challenging (Tardella, 2008). When dealing with limited messages, the

search for information structures becomes even more demanding (Dughmi, Kempe and Qiang,

2016).

In this section, we determine the qualitative properties of optimal information structures

with coarse communication, and use these properties to construct a finite algorithm to calcu-

late the optimal information structure. We begin with a result that simplifies the search for

optimal information structures by focusing on those that induce affinely independent poste-

riors.18

Lemma 3. There exists an information structure τ such that supp (τ) is affinely independent

and solves the sender’s information design problem in equation (1).

If an information structure τ induces posteriors that are affinely dependent, certain pos-

teriors are redundant and can be expressed as affine combinations of others. As a result, the

sender can eliminate one of these redundant posteriors while still satisfying Bayes plausibility

and weakly improving her payoff at the same time. Notably, we provide a constructive proof

that identifies which posterior to drop from a given set of affinely dependent posteriors.

In our second result, we demonstrate that optimal information structures induce the most

extreme beliefs possible. To formalize this result, we define the set of all posteriors for which

the receiver finds it optimal to take action a as Ra = {µi ∈ ∆(Ω) : a ∈ argmaxa′∈A ûR(µi)}.
We refer to these sets as action regions. Each action region can be characterized as the

intersection of finitely many closed half-spaces. Thus, they are convex.

Extremeness of a belief that induces an action a can be defined using a term borrowed

from convex analysis:

Definition 1. µi ∈ Ra is q-extreme if it is in the interior of a q-dimensional convex set within

Ra, but not in the interior any (q+1)-dimensional convex set within Ra.

18Results in this section relies on an assumption that rules out certain preference structures with ‘redundant’
states of the world which are irrelevant for the agents’ utilities. We discuss the formal details in the appendix.
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Intuitively, the extremeness of a belief comes from the following observation. A q-extreme

belief that induces action a can be expressed as a convex combination of (q − 1)-extreme

beliefs that also induce action a, and not the other way around. We say a q-extreme belief is

more extreme than a q′-extreme belief if q < q′. Consequently, a 0-extreme belief is the most

extreme belief.

Lemma 4. There exists an information structure τ that induces (k − 1) posteriors that are

0-extreme points (of some Ra), and the remaining posterior is a q′ ≤ (n − k) extreme-point

(of some Ra), which solves the sender’s information design problem in equation (1).

Given an information structure with at least two posteriors that are not 0-extreme there is

always a way to move these posteriors in opposite directions while fixing every other posterior

and maintaining Bayes plausibility. Essentially, this corresponds to rotating the information

structure within the affine subspace spanned by the other posteriors.

Sender’s utility is convex in each action region, and the probabilities change linearly with

this ‘rotation.’ This implies that the sender’s payoff is weakly increasing in either the direction

of this rotation or the orthogonal direction. This rotation can be continued until one of the

beliefs becomes 0-extreme. At that point any further rotation changes the action induced by

the resulting posterior.

Using this result, we can reduce the size of our search space considerably from an infinite

set (the set of all Bayes plausible information structures) to a search over a finite set.

Corollary 3. The sender’s optimization problem described in (1) can be solved by checking

finitely many candidate information structures.

The proof of the statement gives the explicit finite procedure to find an optimal information

structure. It is straightforward to see that there are only finitely many ways to choose (k−1)

posteriors on 0-extreme beliefs of action regions {Ra}a∈A. Fixing (k − 1) posteriors, the kth

posterior must lie on an affine subspace characterized by µ0 and the first (k − 1) posteriors,

in order to ensure Bayes plausibility.

Searching for the kth posterior in this affine subspace would still be a search over an infinite

set over which the sender utility function is not guaranteed to be continuous and well-behaved.

We show that it is without any loss to restrict the search for the optimal kth posterior to the

intersection of this affine subspace and the extreme points of {Ra}a∈A. The posteriors in this

affine subspace correspond to q-extreme points of {Ra}a∈A for q ≤ (n− k).

Our results in Lemmata 3 and 4 are directly related with the results of Lipnowski and

Mathevet (2017). They show that the optimal information structures induce affinely indepen-

dent beliefs supported at 0-extreme points of action regions Ra, under the assumption that

the message space is rich. We generalize their conclusions to arbitrary message spaces.
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7 Discussion

Optimal Compression. We have previously shown that optimal information structures are

affinely independent. Another way to interpret this result is that the optimal strategy for the

sender compresses an |Ω|-dimensional state space into a |S|-dimensional state space. Thus,

instead of solving for the optimal k-message information structure, we can equivalently think

of the sender’s problem as picking a k-dimensional subspace and solving a full-dimensional

Bayesian persuasion problem in this subspace |S|. This approach allows us to reinterpret the

k-dimensional subspace as the optimal way for the sender to compress the higher-dimensional

state space into k new states that are affinely independent combinations of the original n

states. We provide the formal details of optimal compressions and the results in the appendix.

This approach suggests that our findings can be applied to other settings using the belief

based approach in a natural way. In an application where the sender’s strategy is constrained

to generate posteriors that span a lower-dimensional subspace, finding the optimal informa-

tion structure can be described as a problem of optimal compression. In the appendix, we

exemplify this in models of cheap talk with state-independent beliefs (Lipnowski and Ravid,

2020) and Bayesian persuasion with heterogeneous priors (Alonso and Camara, 2016).

In concurrent work, Malamud and Schrimpf (2021) show that the sender can enhance

her effectiveness by projecting multi-dimensional data onto an optimal information manifold.

Our analysis and constructive methods for finding optimal solutions to constrained persuasion

games also informs a recent line of research in the quantization and signal processing literature

which studies optimal encoding and decoding schemes with misaligned preferences (Anand

and Akyol, 2022, 2023; Akyol and Anand, 2023).

Noise v. Coarseness. The difficulty in communication we analyze in our setting is substan-

tively different from noisy or costly persuasion (Akyol, Langbort and Basar, 2016; Le Treust

and Tomala, 2019; Tsakas and Tsakas, 2018; Bloedel and Segal, 2018; Wei, 2018; Gentzkow

and Kamenica, 2016). While exogenous noise, entropy or Blackwell-informativeness costs also

limit the sender’s problem, these approaches still allow for arbitrarily many action recommen-

dations, and existence results in these models still rely on having a rich message space. Our

setting with a limited message space complements this line of work.

With noisy or costly communication, the sender’s choice is restricted to information struc-

tures in which posteriors are not too close to the extreme points of the belief space, or inducing

beliefs closer to the extreme points of the belief space gets increasingly costly.

On the other hand, with a cardinality constraint on the messages, there are no restrictions

on the locations of the posteriors, but the sender has to strategically choose a limited set of

directions in the belief space to convey more precise information. While the sender can induce

precise posteriors in the sense that the receiver can be arbitrarily certain about the state of
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the world, it’s never possible to perfectly inform the receiver about all states of the world

at the same time. Unlike costly or noisy games, the sender in our setting faces a discrete

prioritization question reminiscent of knapsack-style problems: choosing the best subset of

actions they want to induce with limited communication capacity while also maintaining

Bayes plausibility. We believe that our approach captures many real-life situations where

constraints on available messages are natural.

Experiment Design. Some recent papers interpret the communication procedure with

commitment as the strategic design of an experiment which reveals information about the

state of the world (Kolotilin, 2015; Alonso and Camara, 2016). From this perspective, our

model can be seen as imposing restrictions on the set of possible experimental procedures.

Limited or constrained experiment design has been recently studied by Ball and Esṕın-Sánchez

(2021) and Ichihashi (2019). Ball and Esṕın-Sánchez (2021) study a setting where sender has

access to a feasible set of experiments and can commit to garbling the outcomes. They analyze

welfare implications of garbling the experiments.

Through this lens, our model can be thought of as a setting where the sender has access

to only a limited set of experiment designs, which naturally arises in settings where a social

planner with welfare considerations limits the set of possible experiments. For example, FDA

regulates the standards of a clinical trial, prosecutors are limited about what constitutes an

evidence and who qualifies as a witness, and experiments on humans can only stratify and

control certain variables due to ethical constraints.

Linear persuasion. In a concurrent project, Lyu, Suen and Zhang (2023) extend the study of

persuasion games with constrained signal spaces. They specifically focus on settings with con-

tinuous states and impose additional assumptions on the preference structures of the agents.

They characterize the properties of optimal signaling schemes and analyze comparative statics

as the preference structures or the prior beliefs of the agents change. Similar to our results,

their analysis reveals the interesting dynamic of allocating scarce signal resources and the

tradeoff faced by the sender when deciding which regions of the state space to focus on.

We showed that limited access to signal spaces may not lead to less informative information

structures. In a recent paper, Curello and Sinander (2022) study linear persuasion problems

and identify the conditions under which a sender with more ‘convex’ value function will design

a more informative signal structure. Their insights provide an interesting research avenue for

extending our observations.
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8 Conclusion

We set out to analyze the impact of limited access to messages on strategic communication.

Specifically, we aimed to assess how the effectiveness of coarse communication compares to

richer communication in influencing outcomes and the well-being of the involved parties.

Our findings reveal that the expert consistently performs worse and values gaining access

to additional messages. We studied the marginal value of a message, and identified bounds

for it. Our study uncovered that rational advice-seekers might find it beneficial to restrict

the advice-giver. These findings suggest that regulations on communication capacity have

the potential to rebalance power dynamics from the expert to the decision-maker, enhancing

overall welfare.

Finally, we analyzed the properties of optimal information structures, using them to sim-

plify the optimal information design problem into a finite procedure. Our results introduce

new tools that can seamlessly extend existing findings in the Bayesian persuasion literature

to coarse communication.

We believe our approach is useful for analyzing the interaction between the value of com-

mitment and the value of richer communication. Coarseness can also be studied in richer

settings, such as competition between senders with access to message spaces with different

degrees of coarseness or the challenge of persuading a heterogeneous set of agents using pub-

lic or private messages with different degrees of coarseness. These questions remain open for

future work.
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Appendix A k-convex hull and Preliminary Results

Definition 2. Let Λ ∈ Rn and n, k ∈ N. We have that, x ∈ cok(Λ) of and only if there

exists a set of at most k points {λ1, . . . , λk} ⊆ Λ and a set of corresponding convex weights

{γ1, . . . , γk} such that
∑

i≤k γi = 1 and ∀i, 1 > γi > 0 such that a =
∑

i≤k γiai. Equivalently,

we can write:

cok(A) = {a ∈ Rn : ∃B ⊆ A, s.t. a ∈ co(B) with |B| ≤ k}.

Lemma 5. For every action a ∈ A, the set Ra is closed and convex.

Proof of Lemma 5 Given a ∈ A Ra is the intersection of ∆(Ω), which is closed and convex,

and finitely many closed half spaces defined by {µ ∈ R|Ω| :
∑

ω∈Ω µ(ω)(u(a, ω) − u(a′, ω)) ≥
0}a′∈A. It is therefore closed and convex.

Lemma 6. The sender’s utility ˆûS is convex when restricted to each set Ra.

Proof of Lemma 6 Follows directly from Volund (2018), Theorem 1 or Lipnowski and

Mathevet (2017), Theorem 1.

Appendix B Proofs of Statements in the Main Text

B.1 Proofs on Attainable Payoffs and Marginal Value

Proof of Proposition 2. Let τ be the optimal information structure solving the sender’s

maximization problem.

Let supp (τ) = {µ1, . . . , µk}. By definition τ ∈ I(k, µ0), so
∑

i≤k τ(µi)µi = µ0 and∑
i≤k τ(µi) = 1 and 1 ≥ τ(µi) ≥ 0. Hence, using τ(µi) as the convex weights and (µs,EûS(µs))

as the points, we can how that (µ0,Eτ û
S) ∈ CHk(û

S). We conclude that sup{z|(µ0, z) ∈
CHk(û

S)} ≥ Eτ û
S.

Since (µ0, z) ∈ CHk(û
S), there exists {ûS(µ1), . . . , û

S(µk)} and convex weights {α1, . . . , αk}
with

∑
i≤k αiµi = µ0 and

∑
i≤k αiû

S(µi) = z. Then, {µ1, . . . , µk} ∈ I(k, µ0). Therefore τ ′

could have been picked instead of τ in the sender’s maximization problem, contradicting the

optimality of τ . We conclude that sup{z|(µ0, z) ∈ CHk(û
S)} ≤ Eτ û

S.

Proof of Proposition 3. Suppose τk is the optimal information structure with k messages,

and τk−1 is the optimal information structure with k − 1 messages. Denote the utilities

obtained using these information structures with V (k, µ0), V (k − 1, µ0)

Let supp (τk) = {µ1, . . . , µk}. We can create a k − 1 dimensional information structure

that maintains Bayes plausibility by choosing two posteriors, without loss say µ1 and µ2, and
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defining a new posterior µ12 as their mixture:

µ12 =
τk(µ1)

τk(µ1) + τk(µ2)
µ1 +

τk(µ2)

τk(µ1) + τk(µ2)
µ2

The resulting new information structure has supp (τ ′12) = {µ12, µ3, . . . , µk}, and new

weights {(τk(µ1) + τk(µ2)), τ(µ3), . . . , τ(µk)}. Note that τ ′12 maintains Bayes plausibility .

Now, we define k different information structures, each constructed the same way and

containing k − 1 posteriors, denoted τ12, τ23, . . . , τk−1,k, τk1.
By the optimally of τk−1 among the information structures with k − 1 messages, we have

the following k inequalities:

V (k − 1, µ0) ≥ (τk(µ1) + τk(µ2))u
S

(
τk(µ1)

τk(µ1) + τk(µ2)
µ1 +

τk(µ2)

τk(µ1) + τk(µ2)
µ2

)
+ · · ·+ τk(µk)u

S(µk),

V (k − 1, µ0) ≥ τk(µ1)u
S(µ1) + (τk(µ2) + τk(µ3))u

S

(
τk(µ2)

τk(µ2) + τk(µ3)
µ2 +

τk(µ3)

τk(µ2) + τk(µ3)
µ3

)
+ · · ·+ τk(µk)u

S(µk),

...

V (k − 1, µ0) ≥ τk(µ1)u
S(µ1) + · · ·+ (τk(µk−1) + τk(µk))u

S

(
τk(µk−1)

τk(µk−1) + τk(µk)
µk−1 +

τk(µk)

τk(µk−1) + τk(µk)
µk

)
,

V (k − 1, µ0) ≥ τk(µ2)u
S(µ2) + τk(µ3)u

S(µ3) + · · ·+ (τk(µ1) + τk(µk))u
S

(
τk(µ1)

τk(µ1) + τk(µk)
µ1 +

τk(µk)

τk(µ1) + τk(µk)
µk

)
Dividing all inequalities by k and summing up, we can write:

V (k − 1, µ0) ≥
k − 2

k
V (k, µ0) +

2

k
V ′(k, µ0) ≥

k − 2

k
V (k, µ0)

Where V ′(k, µ0) is the utility of a k dimensional information structure that consists of the

posteriors {µ12, µ23, . . . , µk−1,k, µk1}. For the largest gap possible, we set this equal to the

minimum uS which is 0. Then, we can rearrange this to obtain the following upper bound on

the value of an additional message at k − 1 messages:

V ∗(k)− V ∗(k − 1) ≤ 2

k
V ∗(k)

Analogously, it can be shown that the following relationship must hold between the max-

imum utilities attainable between k and k − 1 messages:

k − 2

k
V (k, µ0) ≤ V (k − 1, µ0) ≤ V (k, µ0)

This concludes the proof of the claim in the text. Note that, if the sender utility uS is

allowed to be negative and has the infimum uS, then the above inequalities can be equivalently
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stated as follows:

V (k, µ0)− V (k − 1, µ0) ≤
2

k

(
V (k, µ0)− uS

)
,

and
k − 2

k
V (k, µ0) +

2

k
uS ≤ V (k − 1, µ0) ≤ V (k, µ0).

Proof of Lemma 2

Let supp (τ) = {µ1, . . . , µk} be affinely dependent. Then, there must exist {λ1, . . . , λk} such

that
∑

i≤k λi = 0 and
∑

i≤k λiµi = 0. Since τ is Bayes plausible, we have µ0 =
∑k

i=1 τ(µi)µi

for some τ(µ1), . . . , τ(µk), which satisfy
∑

i τ(µi) = 1, and ∀i, 1 > τ(µi) > 0.

Now, from the set {λ1, . . . , λk}, some elements must be positive and some negative. Among

the subset with negative weights, pick j∗ such that
τ(µj)

λj
is maximized. Among the subset

with positive weights, pick p∗ such that τ(µp)

λp
is minimized. Now, we can write

µj∗ =
∑
i ̸=j∗

− λi

λj∗
µi, and µp∗ =

∑
i ̸=p∗

− λi

λp∗
µi.

Now, rewriting the Bayes plausibility condition, we get:

τ(µ1)µ1 + · · ·+ τ(µj∗)

(∑
i ̸=j∗

− λi

λj∗
µi

)
+ · · ·+ τ(µk)µk = µ0

⇔
∑
i ̸=j∗

(
τ(µi)−

τ(µj∗)λi

λj∗

)
µi = µ0, and analagously,

∑
i ̸=p∗

(
τ(µi)−

τ(µp∗)λi

λp∗

)
µi = µ0.

Now, we will show that ∀i ̸= j∗,
(
τ(µi)− λi

τ(µj)

λj∗

)
≥ 0 and ∀i ̸= p∗,

(
τ(µi)− λi

τ(µk)
λp∗

)
≥ 0.

If λi = 0, the inequalities hold trivially.

If λi > 0, the inequalities are equivalent to τ(µi)
λi

≥ τ(µj∗ )

λj∗
and τ(µi)

λi
≥ τ(µp∗ )

λp∗
. In both cases, the

condition holds, because λj∗ is negative and λp∗ is chosen to minimize this ratio.

If λi < 0, the inequalities are equivalent to τ(µi)
λi

≤ τ(µj∗ )

λj∗
and τ(µi)

λi
≤ τ(µp∗ )

λp∗
. In both cases, the

condition holds, because λj∗ is chosen to maximize this ratio and λp∗ is positive.

Moreover, note that
∑

i ̸=j∗

(
τ(µi)− λi

τ(µj∗ )

λj∗

)
= (1− τ(µj∗)) +

τ(µj∗ )

λj∗
λj∗ = 1, and analogously

for p∗. Therefore, we can define τ ′ and τ ′′ respectively from τ by dropping µj∗ or µp∗ , and we

maintain Bayes plausibility using convex weights
(
τ(µi)− λi

τ(µj∗ )

λj∗

)
and

(
τ(µi)− λi

τ(µp∗ )

λp∗

)
.

Now, writing Eτ ′û
S − Eτ û

S and Eτ ′′û
S − Eτ û

S, we get:
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Eτ ′û
S − Eτ û

S =
∑
i ̸=j∗

(
τ(µi)− λi

τ(µj∗)

λj∗

)
ûS(µi)−

∑
i≤k

τ(µi)û
S(µi)

Eτ ′′û
S − Eτ û

S =
∑
i ̸=p∗

(
τ(µi)− λi

τ(µp∗)

λp∗

)
ûS(µi)−

∑
i≤k

τ(µi)û
S(µi)

⇔ Eτ ′û
S − Eτ û

S =
−τ(µj∗)

λj∗

(∑
i ̸=j∗

λiû
S(µi)

)
− τ(µj∗)û

S(µj∗)

⇔ Eτ ′′û
S − Eτ û

S =
−τ(µp∗)

λp∗

(∑
i ̸=p∗

λiû
S(µi)

)
− τ(µp∗)û

S(µp∗).

Suppose Eτ ′û
S − Eτ û

S < 0 and Eτ ′′û
S − Eτ û

S < 0. This implies:

−1

λj∗

(∑
i ̸=j∗

λiû
S(µi)

)
− ûS(µj∗) < 0, and

−1

λp∗

(∑
i ̸=p∗

λiû
S(µi)

)
− ûS(µp∗) < 0

⇔ 1

λj∗

(∑
i ̸=j∗

λiû
S(µi)

)
+ ûS(µj∗) > 0, and

1

λp∗

(∑
i ̸=p∗

λiû
S(µi)

)
+ ûS(µp∗) > 0.

However, note that by assumption, λj∗ and λp∗ have opposite signs. Multiplying the first

inequality by λj∗ and the second inequality by λp∗ , we must have:(∑
i≤k

λiû
S(µi)

)
< 0, and

(∑
i≤k

λiû
S(µi)

)
> 0.

Which is a contradiction. So Eτ ′û
S − Eτ û

S < 0 and Eτ ′′û
S − Eτ û

S < 0 cannot hold at the

same time, and either τ ′ or τ ′′ must yield weakly higher expected utility for the sender.

Replace τ with the information structure that yields weakly higher utility using the process

defined above, which drops one belief that is affinely dependent. If the resulting information

structure is affinely independent, we’re done. If not, we can repeat the process described

above and we will either reach an affinely independent set of vectors before we get to two, or

we reach two vectors, which must be affinely independent. This completes the proof.

27



B.2 Proofs for Section 5.1

Let (E, E⃗) denote an Euclidean affine space with E being an affine space over the set of

reals such that the associated vector space is an Euclidian vector space. We will call E the

Euclidean Space and E⃗ the space of its translations. For this example we will focus on three

dimensional Euclidian affine space i.e. E⃗ has dimension 3. We equip E⃗ with Euclidean dot

product as its inner product, inducing the Euclidian norm as a metric. To simplify notation,

we will simply write (R3, R⃗3). Given this structure, we can define the unitary simplex in

the affine space R3 by the following set where ωi corresponds to the point with 1 in its ith

coordinate and 0 in all of its other coordinates. We define the state space Ω = {ω1, ω2, ω3}.
The simplex then becomes:

∆(Ω) =

{
µ ∈ R3|µ = λ1ω1+λ2ω2+λ3ω3 such that

3∑
i=1

λi = 1 and 1 > λi > 0 ∀i ∈ {1, 2, 3}
}

Building on the problem definition in the main text, we focus on Bayesian persuasion games

where the receiver preferences are described with thresholds, i.e. the receiver prefers action

ai ∈ {a1, a2, a3} if and only if the posterior belief µs ∈ ∆(Ω) such that µs(ωi) ≥ T , and

prefers a0 otherwise. Hence, we can say that for i ∈ {1, 2, 3}, j ∈ {0, 1, 2, 3} and j ̸= i we

have Eµs [u
R(ai, ω)] ≥ Eµs [u

R(aj, ω)] if and only if µs(ωi) > T . Define δ1 = (0, 1−T,−(1−T )),

δ2 = (1−T, 0,−(1−T )) and δ3 = (1−T,−(1−T ), 0) and Γ1 = (T, 0, 1−T ), Γ2 = (0, T, 1−T )

and Γ3 = (0, 1− T, T ). The action zones will become:

Ri = {µs ∈ ∆(ω)|µi
s ≥ Ti} = ∆(ω) ∩ {(µ− Γi) · δi ≥ 0|µ ∈ R3},

where · denotes the Euclidean dot product.

Proof of Lemma 1 Let us first characterize the set ∆T . We have19 ∆T = ∆(Ω) \ co2(R1 ∪
R2 ∪R3)). We note that:

co(R1 ∪R2) =co({ω1, (T, 1− T, 0), (T, 0, 1− T ), ω2, (1− T, T, 0), (0, T, 1− T )})
=co{ω1, (T, 0, 1− T ), ω2, (0, T, 1− T )} (2)

19co denotes convex hull operator and cok denotes k-convex hull i.e. cok(A) are the points that can be
represented as convex combination of k elements in A.
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and similarly for co(R1 ∪R3) and co(R2 ∪R3) we have that

co(R1 ∪R3) =co{ω1, (T, 1− T, 0), ω3, (0, 1− T, T )} (3)

co(R2 ∪R3) =co{ω2, (1− T, 0, T ), ω3, (1− T, 0, T )} (4)

The second line follows from the first line since the {ω1, (T, 0, 1 − T ), ω2, (0, T, 1 − T )}
corresponds to the extreme points of co({ω1, (T, 1−T, 0), (T, 0, 1−T ), ω2, (1−T, T, 0), (0, T, 1−
T )}). Similarly using equation (2), (3) and (4), co(Ri∪Rj) can be identified as the intersection

of a half space and the simplex i.e.

co(R1 ∪R2) = ∆(Ω) ∩ {(µ− (T, 0, 1− T )) · (−T, T, 0) ≥ 0|µ ∈ R3} (5)

co(R1 ∪R3) = ∆(Ω) ∩ {(µ− (T, 1− T, 0)) · (−T, 0, T ) ≥ 0|µ ∈ R3} (6)

co(R2 ∪R3) = ∆(Ω) ∩ {(µ− (1− T, T, 0)) · (0,−T, T ) ≥ 0|µ ∈ R3} (7)

So we can define ∆T ⊂ ∆(Ω) as ∆T = ∆(Ω) \ co2(R1 ∪R2 ∪R3). By (5), (6) and (7) we can

see that ∆T is defined as

∆T = {µ = (µ1, µ2, µ3) ∈ ∆(Ω)|∀i ∈ {1, 2, 3}, µi > 1− T}

By definition of ∆T and ∆(Ω) this set is non-empty if and only if T > 2
3
.

Proof of Lemma 2 We can identify the upper bounds through the following problem:

V (2, µ0) = max
i∈{1,2,3}

(
max

µ0∈∆T ,µi∈Ri,µ4∈R4

1− d(µi, µ0)

d(µ4, µ0)

)
subject to µ0 ∈ co(µi, µ4).

First note that by the symmetry of the problem choice of i is not relevant. Without loss

of generality we pick i = 1. Moreover, the constraint that µ0 ∈ co(µi, µ4) implies that we are

searching for a point with the goal of minimizing the distance with µi and maximizing the

distance with µ4. The maximizing triple is therefore (µ∗
0, µ

∗
1, µ

∗
4) with µ∗

0 = (1−T, 1−T, 2T−1),

µ∗
1 = (1−T

2
, 1−T

2
, T ) µ∗

4 = (0, 1
2
, 1
2
). The solution follows from two observations. One is that

given two points µ0 and µi there is a unique line passing through these points hence µ4 is

identified to be the furthest point on that line such that µ4 ∈ R4. The line always intersects

with R4 as otherwise µ0 /∈ ∆T by construction. Then we choose µ0 and µi to minimize

d(µ0, µi) where d(µ0, µi) is measured in the space of translations of R3. Given this solution,
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we have that:

||(T, 1− T

2
,
1− T

2
)− (2T − 1), 1− T, 1− T || =

√
6

2
(1− T )

||(T, 1− T

2
,
1− T

2
)− (0,

1

2
,
1

2
))|| =

√
6

2
T

Giving us that V (2, µ0) =
2T−1
T

. Similarly, we can solve:

V (2, µ0) = min
i∈{1,2,3}

(
max

µi∈Ri,µ4∈R4

(
min

µ0∈∆T

1− d(µi, µ0)

d(µ4, µ0)

))
subject to µ0 ∈ co(µi, µ4).

We observe that the point µ∗
0 = B = (1

3
, 1
3
, 1
3
) is a solution. This follows from the fact that B

is the barycenter of the simplex, and R1, R2 and R3 are defined with the same threshold T .

Thus, any prior µ0 ̸= B implies that the µ0 is closer to one of the action zones. Minimizing

the objective, we pick µ∗
0 = B. Now given this choice, we choose µ4 to maximize leading to

the choice of µ∗
4 = (0, 1

2
, 1
2
) and µ∗

1 = (1−T
2
, 1−T

2
, T ).

Interestingly, the posteriors induced in the optimal information structure for the two

problems are the same, but they are induced with different probabilities. This follows from

the fact that the hyperplanes defining the action zones is parallel to one of the hyperplanes

defining the simplex. So we can write V (2, µ0) =
1
3T
.

Proof of corollary 2 Observe that with fixed T = 2/3, we have V (2, µ0) =
1
2
= V (2, µ0).

Also, V (2, µ0) =
2T−1
T

is increasing in T and V (2, µ0) =
1
3T

is decreasing in T . By continuity

of distance, the objective function in the definition of V (2, µ0) and V (2, µ0) are continuous.

So for any other µ0 ∈ ∆T , V (2, µ0) takes every value between V (2, µ0) and V (2, µ0) by in-

termediate value theorem. By definition, V (2, µ0) >
1
2
implies decreasing marginal value of a

message and V (2, µ0) <
1
2
implies increasing marginal value of a message.

B.3 Proofs on Properties of Optimal Information Structures

Definition 3. The affine hull aff (S) of S is the set of all affine combinations of elements of

S, that is,

aff(S) =

{
k∑

i=1

αixi | k > 0, xi ∈ S, αi ∈ R,
k∑

i=1

αi = 1

}
.

Assumption 1. Receiver preferences over the simplex are such that the intersection of the

affine spans of any two action regions are nonempty: aff(Rp) ∩ aff(Rq) ̸= ∅,∀p, q ∈ A.

Assumption 1 states that the game is already in this simplest possible representation. This

assumption does not lead to any loss in generality and is only about the representation of
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the preference structure. It is satisfied when the (non-relative) interiors of the action regions

{Ra}a∈A ⊆ ∆(Ω) are non-empty. It is violated in the case when there are multiple states

which are payoff irrelevant for the receiver under different actions, so that the affine spans of

some action regions do not intersect.

In settings where Assumption 1 is violated, the persuasion game can be reduced to a

simpler representation that satisfies it. Similarly, when Assumption 1 is satisfied, preferences

and the state space can be reformulated in a way that violates Assumption 1.

To see this, consider a persuasion game that satisfies Assumption 1 with the state space

Ω = {θ1, θ2, θ3}. We can add artificial ‘copies’ of the states to Ω and transform it to Ω =

{θ1, θ′1, θ2, θ′2, θ3, θ′3}, update the preferences so that the players are indifferent between {θi, θ′i}
and split their prior belief between the copies of the states. However, these extra states only

increase the dimensionality of the state space without any substantive difference in preferences,

and the game has a simpler representation in a lower dimensional space which combines each

{θi, θ′i} to a single state.

Proof of Lemma 3. Let supp (τ) = {µ1, . . . , µk} be affinely dependent. Then, there must

exist {λ1, . . . , λk} such that
∑

i≤k λi = 0 and
∑

i≤k λiµi = 0. Since τ is Bayes plausible, we

have µ0 =
∑k

i=1 τ(µi)µi for some τ(µ1), . . . , τ(µk), which satisfy
∑

i τ(µi) = 1, and ∀i, 1 >

τ(µi) > 0.

Now, from the set {λ1, . . . , λk}, some elements must be positive and some negative. Among

the subset with negative weights, pick j∗ such that
τ(µj)

λj
is maximized. Among the subset

with positive weights, pick p∗ such that τ(µp)

λp
is minimized. Now, we can write

µj∗ =
∑
i ̸=j∗

− λi

λj∗
µi, and µp∗ =

∑
i ̸=p∗

− λi

λp∗
µi.

Now, rewriting the Bayes plausibility condition, we get:

τ(µ1)µ1 + · · ·+ τ(µj∗)

(∑
i ̸=j∗

− λi

λj∗
µi

)
+ · · ·+ τ(µk)µk = µ0

⇔
∑
i ̸=j∗

(
τ(µi)−

τ(µj∗)λi

λj∗

)
µi = µ0, and analagously,

∑
i ̸=p∗

(
τ(µi)−

τ(µp∗)λi

λp∗

)
µi = µ0.

Now, we will show that ∀i ̸= j∗,
(
τ(µi)− λi

τ(µj)

λj∗

)
≥ 0 and ∀i ̸= p∗,

(
τ(µi)− λi

τ(µk)
λp∗

)
≥ 0.

If λi = 0, the inequalities hold trivially.

If λi > 0, the inequalities are equivalent to τ(µi)
λi

≥ τ(µj∗ )

λj∗
and τ(µi)

λi
≥ τ(µp∗ )

λp∗
. In both cases,

the condition holds, because λj∗ is negative and λp∗ is chosen to minimize this ratio.

If λi < 0, the inequalities are equivalent to τ(µi)
λi

≤ τ(µj∗ )

λj∗
and τ(µi)

λi
≤ τ(µp∗ )

λp∗
. In both cases,
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the condition holds, because λj∗ is chosen to maximize this ratio and λp∗ is positive.

Moreover, note that
∑

i ̸=j∗

(
τ(µi)− λi

τ(µj∗ )

λj∗

)
= (1 − τ(µj∗)) +

τ(µj∗ )

λj∗
λj∗ = 1, and anal-

ogously for p∗. Therefore, we can define τ ′ and τ ′′ respectively from τ by dropping µj∗

or µp∗ , and we maintain Bayes plausibility using convex weights
(
τ(µi)− λi

τ(µj∗ )

λj∗

)
and(

τ(µi)− λi
τ(µp∗ )

λp∗

)
.

Now, writing Eτ ′û
S − Eτ û

S and Eτ ′′û
S − Eτ û

S, we get:

Eτ ′û
S − Eτ û

S =
∑
i ̸=j∗

(
τ(µi)− λi

τ(µj∗)

λj∗

)
ûS(µi)−

∑
i≤k

τ(µi)û
S(µi)

Eτ ′′û
S − Eτ û

S =
∑
i ̸=p∗

(
τ(µi)− λi

τ(µp∗)

λp∗

)
ûS(µi)−

∑
i≤k

τ(µi)û
S(µi)

⇔ Eτ ′û
S − Eτ û

S =
−τ(µj∗)

λj∗

(∑
i ̸=j∗

λiû
S(µi)

)
− τ(µj∗)û

S(µj∗)

⇔ Eτ ′′û
S − Eτ û

S =
−τ(µp∗)

λp∗

(∑
i ̸=p∗

λiû
S(µi)

)
− τ(µp∗)û

S(µp∗).

Suppose Eτ ′û
S − Eτ û

S < 0 and Eτ ′′û
S − Eτ û

S < 0. This implies:

−1

λj∗

(∑
i ̸=j∗

λiû
S(µi)

)
− ûS(µj∗) < 0, and

−1

λp∗

(∑
i ̸=p∗

λiû
S(µi)

)
− ûS(µp∗) < 0

⇔ 1

λj∗

(∑
i ̸=j∗

λiû
S(µi)

)
+ ûS(µj∗) > 0, and

1

λp∗

(∑
i ̸=p∗

λiû
S(µi)

)
+ ûS(µp∗) > 0.

However, note that by assumption, λj∗ and λp∗ have opposite signs. Multiplying the first

inequality by λj∗ and the second inequality by λp∗ , we must have:(∑
i≤k

λiû
S(µi)

)
< 0, and

(∑
i≤k

λiû
S(µi)

)
> 0.

Which is a contradiction. So Eτ ′û
S − Eτ û

S < 0 and Eτ ′′û
S − Eτ û

S < 0 cannot hold at the

same time, and either τ ′ or τ ′′ must yield weakly higher expected utility for the sender.

Replace τ with the information structure that yields weakly higher utility using the process

defined above, which drops one belief that is affinely dependent. If the resulting information

structure is affinely independent, we’re done. If not, we can repeat the process described

above and we will either reach an affinely independent set of vectors before we get to two, or
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we reach two vectors, which must be affinely independent. This completes the proof.

Proof of Lemma 4. Suppose µ = {µ1, . . . , µk} is an information structure, and without loss

of generality, let µ1, µ2 be posteriors that are not 0-extreme points of any action region Ra.

Let µ1 ∈ R1 and µ2 ∈ R2. Since they are not 0-extreme points, they are at least 1-extreme

points. The proof proceeds analogously if they are p− extreme points for any p > 0.

By Bayes plausibility, we know that
∑k

i=1 τ(µ1)µi = µ0, for the given prior µ0. We can

rearrange the Bayes plausibility condition and write:

(τ(µ1) + τ(µ2))

(
τ(µ1)µ1 + τ(µ2)µ2

τ(µ1) + τ(µ2)

)
+ (1− τ(µ1)− τ(µ2))

( ∑k
i>2 τ(µi)µi

1− τ(µ1)− τ(µ2)

)
= µ0.

Denoting τ(µ1) + τ(µ2) = τ̂12,
τ(µ1)
τ̂12

= τ̂1,
τ(µ2)
τ̂12

= τ̂2, and
τ(µ1)µ1+τ(µ2)µ2

τ(µ1)+τ(µ2)
= µ̂12, we note

that we can replace µ1, µ2 with µ′
1, µ

′
2 and still maintain Bayes plausibility if the following

condition is satisfied:

αµ′
1 + (1− α)µ′

2 = µ̂12, for some α ∈ (0, 1).

The new information structure µ′ = {µ′
1, µ

′
2, µ3 . . . , µk} will be Bayes plausible with the

weights τ ′(µ′
1) = ατ̂12, τ

′(µ′
2) = (1 − α)τ̂12, and τ ′(µi) = τ(µi) for i > 2. Since we know

µ1, µ2 are (at least) 1-extreme points, there exists line segments A1 ⊂ R1, A2 ⊂ R2 and µ1, µ2

are in the relative interior of A1, A2 respectively.

Now, let us choose µ
′′
1 , µ

′
2 that satisfy the following condition:

2τ̂1 − 1

τ̂1 − τ̂2
µ1 +

2τ̂2 − 1

τ̂1 − τ̂2
µ2 = µ

′′

1 − µ′
2. (8)

With any µ
′′
1 , µ

′
2 that satisfies the above condition, we can calculate the corresponding

µ′
1, µ

′′
2 such that:

τ̂1µ
′
1 + τ̂2µ

′′

1 = µ1,

τ̂1µ
′
2 + τ̂2µ

′′

2 = µ2.

Moreover, µ
′
1, µ

′′
1 , µ

′
2, µ

′′
2 will satisfy:

µ̂12 = τ̂1µ
′
1 + τ̂2µ

′
2,

µ̂12 = τ̂1µ
′′

1 + τ̂2µ
′′

2 .

There will be infinitely many possible pairs (µ
′′
1 , µ

′
2) that satisfy equation 8, but let us pick

an arbitrary pair that are within a sufficiently close radius of µ1, µ2. Since û
S is piecewise affine
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and convex within every action region, let us choose a small enough radius so that (µ
′′
1 , µ

′
1, µ1)

are on the same affine piece in R1, and (µ
′′
2 , µ

′
2, µ2) are on the same affine piece in R2. Since

µ1, µ2 are 1-extreme points, hence relative interior points of the line segments A1, A2, we can

find such ϵ, δ. Denoting the directional derivative of ûS with ∇vû
S, the piecewise affine nature

of the sender utility function will imply the following:

{µ′
1, µ

′′

1} ⊂ (A1 ∩Bϵ(µ1)) ⊂ R1,

{µ′
2, µ

′′

2} ⊂ (A2 ∩Bδ(µ2)) ⊂ R2,

∇(µ
′′
1−µ′

1)
ûs(µ1) = ∇(µ

′′
1−µ′

1)
ûs(µ′

1) = ∇(µ
′′
1−µ′

1)
ûs(µ

′′

1) = θ,

∇(µ
′′
2−µ′

2)
ûs(µ2) = ∇(µ

′′
2−µ′

2)
ûs(µ′

2) = ∇(µ
′′
2−µ′

2)
ûs(µ

′′

2) = γ,

where γ and θ are the directional derivatives of ûs in the directions (µ
′′
2 − µ′

2), (µ
′′
1 − µ′

1)

respectively. Now, we define the two candidate information structures that will replace µ =

{µ1, µ2, µ3 . . . , µk} as follows:

µ′ = {µ′
1, µ

′
2, µ3 . . . , µk},

µ′′ = {µ′′
1, µ

′′
2, µ3 . . . , µk}.

Denote the part of the sender utility that is coming from the 0-extreme points {µ3, . . . , µk} as

ū =
∑k

i>2 τ(µi)û
S(µi). Now, by our initial assumption, µ is an optimal information structure,

so we must have:

τ̂1τ̂12û
S(µ′

1) + τ̂2τ̂12û
S(µ′

2) + ū ≤ τ(µ1)û
S(µ1) + τ(µ2)û

S(µ2) + ū,

τ̂1τ̂12û
S(µ

′′

1) + τ̂2τ̂12û
S(µ

′′

2) + ū ≤ τ(µ1)û
S(µ1) + τ(µ2)û

S(µ2) + ū

⇐⇒

τ̂1û
S(µ′

1) + τ̂2û
S(µ′

2) ≤ τ̂1û
S(µ1) + τ̂2û

S(µ2),

τ̂1û
S(µ

′′

1) + τ̂2û
S(µ

′′

2) ≤ τ̂1û
S(µ1) + τ̂2û

S(µ2).

⇐⇒

τ̂1/τ̂2
(
ûS(µ′

1)− ûS(µ1)
)
≤
(
ûS(µ2)− ûS(µ′

2)
)
,

τ̂1/τ̂2

(
ûS(µ

′′

1)− ûS(µ1)
)
≤
(
ûS(µ2)− ûS(µ

′′

2)
)
.

Now, by the convexity of ûS within each action region,
(
ûS(µ′

1)− ûS(µ1)
)
and (ûS(µ

′′
1)−

ûS(µ1)) can’t both be negative. Similarly,
(
ûS(µ′

1)− ûS(µ1)
)
and

(
ûS(µ

′′
1)− ûS(µ1)

)
can’t

both be positive, since it would imply that
(
ûS(µ2)− ûS(µ′

2)
)
and

(
ûS(µ2)− ûS(µ

′′
2)
)
are

both positive, which is in contradiction with convexity. This leaves us with two possible
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cases. We will focus on one case, and the proof proceeds analogously in the symmetric case.

Suppose
(
ûS(µ′

1)− ûS(µ1)
)
is positive and

(
ûS(µ

′′
1)− ûS(µ1)

)
is negative. This implies(

ûS(µ2)− ûS(µ′
2)
)
must also be positive. Therefore,

(
ûS(µ2)− ûS(µ

′′
2)
)
is negative. Since

sender utility is piecewise affine within R1, R2, we rewrite the above inequalities using the

directional derivatives and the definitions of µ′
1, µ

′′
1 , µ

′
2, µ

′′
2 :

τ̂1/τ̂2

(
τ̂2θ · (µ′

1 − µ
′′

1)
)
≤ γ · (τ̂2(µ′′

2 − µ′
2)),

τ̂1/τ̂2

(
τ̂1θ · (µ

′′

1 − µ′
1)
)
≤ γ · (τ̂1(µ′

2 − µ′′
2)).

⇐⇒

τ̂1

(
θ · (µ′

1 − µ
′′

1)
)
≤ τ̂2 (γ · (µ′′

2 − µ′
2)) ,

τ̂1

(
θ · (µ′′

1 − µ′
1)
)
≤ τ̂2 (γ · (µ′

2 − µ′′
2)) .

⇐⇒

τ̂1

(
θ · (µ′

1 − µ
′′

1)
)
= τ̂2 (γ · (µ′′

2 − µ′
2)) .

Therefore the information structure µ = {µ1, µ2, µ3 . . . , µk} will at best yield the same sender

utility with µ′ = {µ′
1, µ

′
2, µ3 . . . , µk}, and µ′′ = {µ′′

1, µ
′′
2, µ3 . . . , µk}.

The remaining part for the proof follows from the following claim:

Claim 1. Let |Ω| = n and |A| = k. Suppose we have an information structure τ with

supp(τ) = µ = {µ1, . . . , µk} satisfying Bayes plausibility. If there exists a posterior in supp(τ)

where µa ∈ Ra such that µa is a q-extreme points of Ra, with q > (n − k), then there must

exist a Bayes plausible τ ′ ̸= τ that weakly improves sender utility.

Proof. By our previous results in Lemma 3, we know that k-dimensional information struc-

tures can be improved unless they consist of affinely independent posteriors. So without loss,

we can restrict attention to affinely independent k-dimensional information structures. Since

|Ω| = n , the beliefs over Ω are represented in the (n − 1) dimensional space. Let µ1 be a

q−extreme point of R1 with q ≥ (n−k). In other words, µ1 is in the interior of a q-dimensional

convex set S within R1, but there is no q + 1 dimensional convex set within R1 such that µ1

is an interior point.

Since R1 is a polyhedron, µ1 belongs to the interior of a q-dimensional face of R1. More-

over, µ1 belongs to µ, which consists of k affinely independent points, so it belongs to the

(k − 1)-dimensional affine surface M which consists of the affine hull of µ. Since µ1 belongs

to a q-dimensional face of R1, by definition, there is a unique q-dimensional affine surface S

containing this face. Additionally, M is (k−1)−dimensional, and S is at least n−k+1 dimen-
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sional by definition, their intersection S ∩ M is non-empty and includes µ1 by construction

and it is at least 1 dimensional (since n− k + 1︸ ︷︷ ︸
dimS

+ k − 1︸ ︷︷ ︸
dimM

= n > n− 1).

We can find a radius ε small enough such that Bε(µ1) ∩ (S ∩ M ∩ R1) ̸= ∅, and within

this intersection a line segment , since S ∩ M is at least 1 dimensional. We can find two

points from this line segment µ′
1, µ

′′
1 such that µ1 is a convex combination of µ′

1, µ
′′
1 with

(α)µ′
1 + (1− α)µ′′

1 = µ1.

Therefore we can ‘split’ µ1 into µ′
1, µ

′′
1 to build the k+1 dimensional information structure

µ̃ = {µ′
1, µ

′′
1, µ2, . . . , µk} which will satisfy Bayes plausibility with the new adjusted weights

{ατ(µ1), (1− α)τ(µ1), τ(µ2), . . . , τ(µk)}. This yields utility:

τ(µ1)((α)û
s(µ′

1) + (1− α)ûs(µ′′
1)) +

k∑
i=2

τ(µi)û
s(µi) ≥

τ(µ1)û
s(µ1) +

k∑
i=2

τ(µi)û
s(µi),

by convexity of ûs within R1.

Since µ̃ consists of k + 1 points belonging to a k − 1 dimensional affine surface, it cannot

be affinely independent. Then, using Lemma 3, we can find an improvement by dropping one

posterior from µ̃, which weakly improves on the utility gained by inducing µ = {µ1, . . . , µk}.

Proof of Corollary 3

We have |A| many action zones with finitely many 0-extreme points. Let us denote the

total number of 0-extreme points of all the sets {Ra}a∈A ⊂ ∆(Ω) with E.

An optimal information structure µ = (µ1, . . . , µk) should have a support with at least

(k−1) 0-extreme points. There are
(

E
k−1

)
way of picking (k−1) different 0-extreme points. Let

us denote an arbitrary choice of (k − 1) unique 0-extreme points with µ−k = (µ1, . . . , µk−1).

If µ0 ∈ co(µ−k) then the information structure µ−k itself is a candidate for the optimal

and in fact the optimal sender utility can be achieved with only (k − 1) messages.

If µ0 /∈ co(µ−k), we can define the set of µk such that for µ = (µ−k, µk) we get that

µ0 ∈ co(µ).

This set corresponds to the intersection of the affine polyhedral convex cone generated by

µ−k + µ0 = (µ1 + µ0, . . . , µk−1 + µ0) - which we denote M = {µ0 =
∑k−1

i=1 (αiµi + µ0)|αi ≥
0∀i ∈ {1, . . . , k − 1}} and the simplex ∆(Ω). Define the set S = M ∩∆(Ω)

By the definition of the set M , we have that for each µk ∈ S ⊂ ∆(Ω) there exists

α = (α1, . . . , αk) with αi > 0 for all i = 1, . . . , k such that
∑

αiµi = µ0.

Now if µ = (µ−k, µk) is not affinely independent, then we can drop some posteriors from

µ̃ using the protocol described in Lemma 3 and obtain an affinely independent information
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structure. Moreover, we know µ̃ ̸= µk since µ0 /∈ co(µ−k) violating Bayes plausibility.

If it is the case that µ = (µ−k, µk) is affinely independent, we have established that for

each µ - hence for each choice of µk ∈ M - the weights α are uniquely determined. Hence,

given µ−k the choice of µk determines the sender utility uniquely.

Now we turn to the question of choosing µk. First note that M is a polyhedral cone, so

it defines a convex polyhedra in Rn, Moreover, its intersection with ∆(Ω) - an n-dimensional

polytope- is a convex polytope. Moreover, S = M ∩ ∆(Ω) has at most dimension k < n.

By these facts, it follows that for every action region Ra, the restriction of Ra to the set S,

denoted Ra = Ra ∩ S is a convex polytope of dimension at most k.

We will now show that when we are choosing µk which must lie in a set Ra, the optimal

choice of µk ∈ Ra can be always restricted to lie on the 0-extreme points of the sets {Ra}a∈A.
Suppose not, let µk be a q-extreme point for q > 0. We can now proceed analogously to proof

of Lemma 4 and find a ϵ-ball around µk that will stay inside S and Ra. Our assumption

on µk being a q-extreme point implies that it belongs to a q-face of Ra. Moreover, since S

is n-dimensional and the q-face µk belongs to is q > 0 dimensional, their intersection has

dimension of at least 1.

Within this intersection, we can therefore find a line segment and points on this line

segment µ′
k, µ

′′
k such that µk is a convex combination of µ′

k, µ
′′
k with (α)µ′

k + (1− α)µ′′
k = µk.

Again following the same line of argument with Lemma 4, we can show that either the

information structure {µ−k, µ
′
k} or {µ−k, µ

′′
k} weakly improves over {µ−k, µk}. This shows

that we can, without loss, pick µk from the 0-extreme points of Ra.

Hence, given a choice of (µ1, . . . , µ−k) - which are all 0-extreme points of {Ra}a∈A , the

choice of the kth point has finitely many candidates identified as the 0-extreme points of the

sets {Ra}a∈A = {Ra ∩ S}a∈A. There are at most |A| = m sets in this collection with finitely

many 0-extreme points. So the optimal information structure can be found in finitely many

steps, specifically by choosing the first (k − 1) posteriors in
(

E
k−1

)
different ways, and adding

the final kth posterior by checking the 0-extreme points of the sets {Ra}a∈A = {Ra ∩ S}a∈A.

Appendix C Optimal Compressions

We will begin by establishing a series of lemmas that illustrate the connection between choos-

ing k-dimensional information structures in ∆(Ω) and optimally compressing n states to k

states. Subsequently, the Bayesian persuasion problem within the new belief space in Rk has

a well-known solution given by k-concavification.

Definition 4. A k-dimensional flat in Rn is defined as a subset of a Rn that is itself homeo-

morphic to Rk. Essentially, flats are affine subspaces of Euclidian spaces.
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A flat T belonging to the set Tk can be defined by linearly independent vectors {µ̃1, . . . , µ̃k} ∈
Rn×k as T =

{
µ ∈ Rn|µ = µ0 +

∑k
i=1 αiµ̃i

}
⊂ Rn.

Formally, the coarse strategic communication problem for the sender is equivalent to an

alternative formulation in which the sender first selects an ‘optimal k-dimensional compres-

sion,’ denoted as Tk, of the state space. Subsequently, the sender solves a full-dimensional

problem in Rk with k messages. This allows us to reinterpret this k-dimensional summary as

the optimal method for the sender to compress the higher-dimensional state space into k new

states, which are mixtures of the former n states.

Lemma 7.

max
τ

Eµ∼τ û
s(µi)| subject to Eµ∼τµ = µ0 , |supp (τ)| ≤ k (9)

achieves the same optimal value with the problem:

max
T∈Tk

max
τ

Eµ∼τ û
s(µi)|T subject to Eµ∼τµ = µ0 , |supp (τ)| ≤ k and supp (τ) ⊂ Tk (10)

Proof. We will first show that a solution to the second maximization problem exists. In order

to see this we first establish the compactness of Tk.

Lemma 8. Tk is a compact smooth manifold. Moreover, T ∈ Tk can be represented with the

projection matrix of its parallel subspace W = span(µ̃1, . . . , µ̃k).

Proof. Tk is homemorphic to the space that parameterizes all k-dimensional linear subspaces

of the n-dimensional vector space.

This is called the Grassmannian space, which we will denote Gk(Rn). The Grassmannian

Gk(Rn) is the manifold of all k-planes in Rn, or in other words, the set of all k−dimensional

subspaces of Rn. The homeomorphism is obtained by subtracting µ0 from each line equation.

Define the Steifel manifold Vk (Rn) as the set of all orthonormal k-frames of Rn.20 Hence,

elements of Vk (Rn) are k-tuples of orthonormal vectors in Rn. Vk (Rn) is identified with a

subset of the cartesian product of k many (n−1) spheres Sn−1 = {x ∈ Rn : ∥x∥ = 1}. It is an
immediate observation that (Sn−1)

k
a closed subspace of a compact space. So, we can easily

conclude the Steifel manifold Vk (Rn) is compact in the inherited topology from Rn×k

Next, we define a map Vk (Rn) −→ Gk (Rn) which takes each n-frame to the subspace it

spans. Letting Gk (Rn) be constructed via the quotient topology from Vk (Rn), we establish

that Gk (Rn) is also compact. This also establishes that Tk is a compact smooth manifold, as

it is just an affine translation of Gk (Rn).

Now we will show that T ∈ Tk can be represented with the projection matrix of its parallel

subspace W = span(µ̃1, . . . , µ̃k). Consider the set of real n × n matrices Xk(n) that are (i)

20A k-frame is is an ordered set of k linearly independent vectors in a vector space. It is called an orthogonal
frame if the set of vectors are orthonormal
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idempotent, (ii) symmetric and (iii) have rank k. The requirement that a matrix X ∈ Xk(n)

has rank k is equivalent to requiring X has trace k.21

To prove the second claim, it suffices to define a homeomorophism between Xk(n) and

Gk (Rn). The homeomorphism ϕ is ϕ(X) = C(X), ϕ : Xk(n) → Gk(Rn) where C(X) denotes

the column space of X. Moreover, lettingXW be the operator for projection to subspaceW and

XW ′ be the operator for projection to subspace W ′ we can define the metric dGk(Rn) (W,W ′) =

∥XW −XW ′∥ where∥·∥ is the operator norm, that metrizes Gk(n).

We call the projections from ∆(Ω) onto the flat T ∈ Tk a k-dimensional summary, as it

is a lower dimensional representation of the n−dimensional state space. When we talk about

the flat T , we will be actually talking about its intersection with the simplex, T ∩ ∆(Ω),

but we will be omitting the intersection for brevity. We will now show that the value of the

interior maximization problem is upper-semi continuous in T . Formally we prove this with

the following Lemma:

Lemma 9. The optimal value of the maximization problem:

W (T, µ0) = max
τ

(Eµi∼τ û
s(µi)|T ) subject to Eµi∼τ (µi) = µ0, supp(τ) = µ ⊆ T

is upper semi-continous in T .

Proof. We will start with discussing some preliminary facts. The value function W (T, µ0)

exists, as shown by Kamenica and Gentzkow (2011).

Let τT be the optimal information structure with support µT on the flat T that is repre-

sented with the parallel subspace W and projection matrix XT . Let τT ′ with support µT ′ be

the optimal information structure on the flat T ′ represented with the parallel subspace W ′

and projection matrix XT ′ , formally ∀ϵ > 0, there exists a δ > 0 such that whenever we have

|XT −XT ′ | < δ, we get W (T ′, µ0) ≤ W (T, µ0) + ε.

We know that (Eµi∼τ û
s(µi)) is upper semi-continuous in µ. So for any ε, there exists a δϵ

such that whenever ||µ− µ′|| < δϵ, we get V (µ′) ≤ V (µ) + ϵ. Observe that:

||XT −XT ′ || = sup
µ̃
{||(XT −XT ′)µ|µ ∈ Rn and ||µ|| ≤ 1||} = sup

T ′
{||(XT −XT ′)µ|µ ∈ ∆(Ω)|}.

Define MT and MT ′ be the projection matrices corresponding to parallel subspace con-

sisting of vectors {mT | mT ∈ T ∩ Bd∆(Ω)} and {mT ′ | mT ′ ∈ T ′ ∩ Bd∆(Ω)}. We will

21This follows the fact that X is idempotent. An idempotent matrix is always diagonalizable and its
eigenvalues are either 0 or 1 (Horn and Johnson, 1991). Trace of X is the sum of its eigenvalues, hence gives
the rank of X.
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show:

||XT −XT ′ || = ||(XT −XT ′)µ̃|| ≥ γ||MT −MT ′|| ≥ γ||µT − µT ′ ||

We start by showing that ||(XT −XT ′)µ̃|| ≥ γ||MT −MT ′ ||. First, by definition of matrix

norm ||(XT − XT ′)µ̃|| ≥ ||MT − MT ′||max = maxr∈R ||mr
T − mr

T ′ ||2. By equivalence of finite

dimensional norms, there exists a constant γ such that ||MT − MT ′ ||max ≥ γ||MT − MT ′ ||.
Hence, we obtain that ||(XT −XT ′)µ̃|| ≥ γ||MT −MT ′ ||.
Now let us turn to the last inequality γ||MT −MT ′ || ≥ γ||µT − µT ′ ||. This follows by making

µ0 the origin via subtracting µ0 i.e. MT − µ0, MT ′ − µ0, µT − µ0, µT ′ − µ0 in RN and noticing

that for u and v in RN ||αu− βv|| is monotone in α and β.

Recall that, (Eµi∼τ û
s(µi)) is upper semi-continuous in µ. So for any ε, there exists a δϵ such

that whenever ||µ − µ′|| < δϵ, we get V (µ′) ≤ V (µ) + ϵ. Then for each ε > 0 one can pick

δ = 1
γ
δε to ensure that

1

γ
δε > ||XT −XT ′|| ≥ ||µT − µT ′ ||.

This ensures the upper semicontinutity of V (T ) i.e. ∀ϵ > 0, there exists a δ > 0 such that

whenever we have |XT −XT ′| < δ, we get V (µT ′) ≤ V (µT ) + ε.

By above Lemmas, the existence of the optimal for the second maximization problem in

Lemma 7 follows from topological extreme value theorem as it is shown to be an upper semi-

continuous function maximized over a compact smooth manifold to reals. To complete the

proof of Lemma 7, it is straightforward to show that the two maximization problems yield

the same maximum.

Let τ1 be the maximizer of equation (9) and τ2 ∈ T be the maximizer of equation (10).

We show that E(τ1)ûS(µ) = E(τ1)ûS(µ). Suppose not, let E(τ1)ûS(µ) > E(τ1)ûS(µ. But

then in the second problem, we could have picked Tτ1 = aff(µ1) where aff denotes affine

hull, and τ = τ1 to get a higher value, contradicting the optimality of µ2. Now suppose

E(τ1)ûS(µ) < E(τ1)ûS(µ, but then directly picking τ = τ2 in the first problem yields a better

payoff, contradicting to the optimality τ1 in the first problem.

Appendix D Cheap Talk with Transperant Motives

Lipnowski and Ravid (2020) study an abstract cheap-talk model in a recent paper. Their

model is identical to our setup, except for three major changes. First, the communication

protocol is cheap talk, the expert cannot committ to a messaging strategy π. Second, the

sender’s utility is independent of the state but only depends on the action taken i.e. uS : A →
R, and hence their paper is titled ‘Cheap Talk with Transparent Motives.’ Finally, in they
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assume rich message spaces: |S| ≥ |Ω|. We consider a variation of their model where only the

last assumption is changed to |S| < |Ω|.
Throughout this appendix, we will focus on the Perfect Bayesian Equilibria - hereinafter

referred as the equilibrium- E(π, ρ, β) of this cheap talk game. Formally, the equilibrium is

defined by three measurable maps: a messaging strategy for the sender π : Ω → ∆(S); a

receiver strategy â : S → ∆A ; and a belief system for the receiver µs : S → ∆Ω; such that:

1. µs is obtained from µ0, given π, using Bayes’s rule;

2. â(s) is supported on argmaxa∈A
∫
Ω
uR(a, ·)dβ(· | s) for all s ∈ S; and

3. π(ω) is supported on argmaxs∈S
∫
A
uS(·)dρ(· | s) for all ω ∈ Ω.

Lipnowski and Ravid (2020) approach this problem using the belief based approach, sim-

ilar to the Bayesian persuasion framework we described in the main text, by focusing on

information structures τ ∈ ∆(∆(Ω)).

As discussed in the main text, every belief system and sender strategy leads to an ex-ante

distribution over receiver’s posteriors. By Bayes Rule these posteriors should be equal to the

prior on average. Hence, the set of Bayes plausible information structures can be identified

by every equilibrium sender strategy which leads to a posterior belief that is an element of

I(µ0) = {τ ∈ ∆(∆(Ω))|
∫
µdτ(µ) = µ0}.

However, if the sender is constrained to sending only k messages it can only induce an ex-

ante distribution over receiver’s posterior with k elements in the its support and this is the only

restriction imposed by access to limited number of messages . Recall that, the set of possible

ex-ante distributions was I(k, µ0) = {τ ∈ ∆(∆(Ω))|
∫
µdτ(µ) = µ0 and | supp(τ)| ≤ k}.

Let the sender’s possible continuation values from the receiver having µ as his posterior

be defined with the correspondence V (µ) := couS
(
argmaxa∈A

∫
uR(a, ·)dµ

)
.22 Aumann and

Hart (2003) and Lipnowski and Ravid (2020) show that an outcome (τ, z) is an equilibrium

outcome if and only if it holds that (i) τ ∈ I (µ0), and (ii) z ∈
⋂

µ∈supp(τ) V (µ).

Building on their insight, we can show that this result directly extends to the coarse

communication environment. Let (τ, z) be an outcome pair describing a distribution over

posterior beliefs τ , and a utility level z. When the receiver is constrained to sending k-

message i.e |S| ≤ k we can characterize equilibrium outcomes as follows. The proof of the

following Lemma is identical to the proof of Lipnowski and Ravid (2020).

Lemma 10. (τ, z) is an equilibrium outcome if and only if: τ ∈ Ik (µ0) and z ∈
⋂

µ∈supp(τ) V (µ).

22This is a generalization of ûS(·) in the main text. The key difference is that we are no longer focusing on
sender-preferred equilibrium.
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Essentially, the first condition, τ ∈ Ik (µ0), is identical to the condition imposed in the

problem in main text. Limiting the available messages limit the set of inducable posteriors

with a one-to-one relationship, hence replacing τ ∈ I(µ0) with τ ∈ Ik (µ0). The second con-

dition - z ∈
⋂

µ∈supp(τ) V (µ) - is a combination of sender and receiver incentive compatibility

constraints and shown to be the equilibrium IC condition by Lipnowski and Ravid (2020).

In their paper, Lipnowski and Ravid (2020) also provide a novel way of using non-

equilibrium information structures to infer possible equilibrium payoffs of the sender. For-

mally, they say that an information structure τ ∈ I(µ0) secures z if and only if Pµ∼τ (V (µ) ≥
z) = 1. Using this definition they show that an equilibrium inducing sender payoff z exists if

and only if z is securable.

The only difference in coarse communication is that the sender is restricted use an in-

formation structure τ from Ik(µ0). Hence, we say that an information structure τ ∈ Ik(µ0)

k-secures z if and only if Pµ∼τ (V (µ) ≥ z) = 1. Following the exact arguments in Lipnowski

and Ravid (2020), when |S| ≤ k an equilibrium inducing sender payoff z exists if and only if

z is k-securable.

Using this equilibrium characterization via k-securablity, we can state that a sender-

preferred equilibrium exists and the payoff of the sender in this equilibrium can be character-

ized by V ∗
k (·) := maxτ∈Ik(·) inf V (supp τ). In this setting, the sender is maximizing the highest

payoff value it can secure across all k-dimensional information policies, as inf V (supp τ) corre-

sponds to the highest value which the information structure τ k-secures. By comparison, with

unlimited messages this value is characterized by V ∗(·) := maxτ∈I(·) inf V (supp τ). Lipnowski

and Ravid (2020) show that V ∗(·) corresponds to the the quasiconcave envelope of sender’s

value function V (µ). This means that it is the the pointwise lowest quasi-concave and upper

semi-continuous function that majorizes v.23

Proposition 4. In the setting of Lipnowski and Ravid (2020) with a coarse message space

|S| = k, a sender preferred equilibrium exists. Defining all Bayes plausible information struc-

tures within a new compressed space Tk by ITk
(µ0) = {τ ∈ ∆(∆(Tk))|

∫
µdτ(µ) = µ0}, the

sender’s utility with the optimal information structure can be characterized by:

v∗k = max
Tk∈I(µ0)

(
max

τ∈ITk (µ0)

(
min

µ∈supp τ
Eω∼µu

S(µ)

))
.

Proposition 4 shows quasi-concavification can be used on lower-dimensional linear com-

pressions of the state space, which is equivalent to the solution of the cheap talk game

with coarse communication. This is to say that, given sender’s optimal choice of optimal k-

compression Tk, the solution to the sender’s problem is identical to solving an unconstrained

23Given x,y ∈ Rn, we say that x weakly majorizes (or dominates) y from below (or equivalently, we say

that y is weakly majorized (or dominated) by x from below) denoted as x ≻w y if
∑k

x(i) ≥
∑k

i=1 y(i) for all
k = 1, . . . , n.
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problem over the the compressed state space Tk. Lipnowski and Ravid (2020) point out that

the difference between the quasi-concave envelope and the concave envelope at a fixed prior

can be interpreted as the value of commitment power for the sender. The methods we develop

in this paper can then be used to analyze the interaction between commitment power and

communication complexity, to compare the achievable utilities with and without commitment,

and with message spaces of different size.

Proof. This follows directly from Lipnowski and Ravid (2020) and the result in lemma 7. To

see the equivalence of the maximization problem in Lipnowski and Ravid (2020) with the

V ∗
k = maxTk∈Tk

(
maxτ∈Tk

(
minµ∈supp τ Eω∼µu

S(µ)
))
, it suffices to show that

max
τ

min
µ∈supp (τ)

CHk(û
s)(µ) subject to Eµ∼τµ = µ0

is equivalent to

max
Tk∈Tk

max
τ∈Tk

min
µ∈supp τ

CH(ûs)(µ) subject to Eµ∼τµ = µ0.

Existence for the first maximum problem follows from existence results in Lipnowski and

Ravid(2020) and the fact that {τ ∈ ∆(∆(Ω))|Eµ∼τµ = µ0 and |supp τ | ≤ k} is a closed subset

of {τ ∈ ∆(∆(Ω))|Eµ∼τµ = µ0}. The equivalence follows from lemma 7 proven above. First

it is already shown that Tk is compact, and secondly maxτ∈Tk
minµ∈supp τ CH(ûs)(µ) is upper

semicontinuous due to upper semi-continuity of ûs.

Appendix E A Model with Heterogeneous Priors

We can also easily use our framework to persuasion games in which the sender and the receiver

have different priors about the state, originally studied by Alonso and Camara (2016).

Let µs
0 be the sender’s prior, and µr

0 be the receiver’s prior. We will adopt the perspective

of the sender. For any posterior belief µk of the sender, let t(µk, µ
s
0, µ

r
0) denote the perspective

transformation function giving us the receiver’s posterior belief, given the priors for the two

agents. Alonso and Camara (2016) show that this is a bijective function and provide addi-

tional details. For every posterior belief of the sender induced by a signal, there is a unique

corresponding posterior for the receiver which can be derived using this simple perspective

transformation function. For brevity, we suppress the last two arguments of the function t and

simply write t(µk) to denote the corresponding receiver posterior given the sender posterior

µk.

Re-defining the expected sender utility to reflect heterogeneity in priors, we can write

ûS
t (µk) = Eω∼µk

us(â(t(µk), ω), mindful of the fact that when the sender’s posterior is µk,
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receiver’s will be t(µk) and the receiver-optimal action â(t(µk)) will be potentially different

from â(µk).

Under coarse communication, the sender will solve the following maximization problem

max
τ∈∆(∆(Ω))

Eµs∼τ û
S
t (µs) subject to |supp (τ)| ≤ k and Eτ (µs) = µS

0 . (11)

Our framework can be used to analyze the achievable utilities, and the concavification

result described in Proposition 2 in Alonso and Camara (2016) can be extended to the case of

k-concavification. Simply, the k-dimensional optimal information structure given the sender

prior µS
0 will be equal to the k-concavification of the perspective transformed-sender utility

function Vk(µ
s
0) = sup{z|(µ0, z) ∈ CHk(û

S
t )}.

Therefore, we can quite easily generalize our example in section 2, or our parametric

analysis of threshold games in Section 5.1 to settings where there are disagreements about

the prior likelihoods of different states between agents. For example, the voter’s initial beliefs

that they would get an ad from an ideologically aligned politician could be different from the

politician’s prior belief that they would interact with a voter with aligned ideologies. Or, in

the case of threshold games, the buyer’s initial belief on which one of the multiple possible

products is a better fit for their preferences could be different from the seller’s beliefs. The

k-concavification method can then be used to analyze how the value of increased precision in

communication will depend on the level of disagreement (in terms of prior beliefs) between

the sender and the receiver.
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