A bandit model of bilateral trade with two-sided learning

Mitchell Watt with Yunus Aybas
Third Year Seminar
28 April 2021

Introduction

- We study a problem of trade in a setting with one buyer and many sellers with differentiated goods, repeated interaction and two-sided uncertainty about valuations.
- Buyers and sellers engage in experimentation and seek to learn value distributions and costs, and exploit information learned.
- Interpret as a 'strategic armed bandit' (as in Braverman et al. 2019).
- CS perspective: we seek algorithms for the buyer which provide payoff guarantees for all possible value distributions / cost profiles.
- 'Negative' result: classical bandit regret-minimizing algorithms may be exploited by sellers and result in very low payoffs for the buyer.
- 'Positive' result: we describe an algorithm for buyers with good payoff guarantees given optimal response by sellers.
- Economics perspective: algorithms act as a commitment device for the buyer

Agenda

1. Introduce model
2. Literature review
a) Review of multi-armed bandit literature
b) 'Strategic-armed' bandits: Braverman, Mao, Schneider and Weinberg (2019)
3. Non-strategic benchmark
4. Negative results
5. Positive results
6. Conclusion and next steps

Information structures:

- Mostly interested in two-sided uncertainty: neither buyer nor seller knows distributions F_{i}.
- Will also use one-sided uncertainty (seller knows F_{i}) as a benchmark.
- Will usually assume all sellers see which arm the buyer chooses.

Solution concept

- Typical approach in economics: Markov perfect equilibrium
- Not well-defined under 'Knightian' uncertainty about valuation distributions.
- Difficult! Likely non-unique, complicated.
- We take a CS-inspired approach
- Goal: An algorithm for the buyer with good payoff guarantees, assuming that sellers are behaving 'reasonably'.
- The algorithm should be robust to the distributions F_{1}, \ldots, F_{K} and $\operatorname{costs} c_{1}, \ldots, c_{K}$.
- The algorithm will usually be random, in which case we seek payoff guarantees with high probability or in expectation.
- The payoff guarantees might be relative to the maximal possible payoffs ('regret').
- Sellers will be playing dominant strategies / approximate Nash equilibria / minimizing their own regret.

Agenda

1. Introduce model
2. Literature review
a) Review of multi-armed bandit literature
b) 'Strategic-armed’ bandits: Braverman, Mao, Schneider and Weinberg (2019)
3. Non-strategic benchmark
4. Negative results
5. Positive results
6. Conclusion and next steps

Multi-armed bandits: review

Bandit varieties

- Stochastic bandit: $v_{k, t} \sim F_{k}$ iid
- Bayesian bandit: learner assumes distribution $v_{k, t} \sim F_{k}(. \mid \theta)$ with prior $\pi(\theta)$ over θ.
- Adversarial bandit: $v_{k, t}$ is chosen by some (possibly adaptive) adversary to maximize regret.
- Strategic bandit: $w_{k, t} \sim F_{k}$ iid, if chosen arm k chooses $v_{k, t}<w_{k, t}$ to pass on, pocketing the residual for themselves (Braverman, Mao, Schneider and Weinberg 2019)
- DM chooses one of K arms each round, over T rounds.
- On choosing arm $k(t)$, DM receives $v_{k(t), t}$.
- DM seeks to maximize $\operatorname{Rev}=\sum_{t=1}^{T} v_{k(t), t}$.
- Alternatively, DM minimizes Regret $=\max _{k} \sum_{t=1}^{T} v_{k, t}-\operatorname{Rev}$

Bandit algorithms

- Typically, choosing randomly gives $\Theta(T)$ regret.
- We are interested in algorithms that result in sublinear regret.
- Exploration vs exploitation trade-off

UCB (Upper Confidence Bound)

- Choose arm at time t which maximizes

Sample mean of observed rewards $+\sqrt{\frac{c \log t}{\text { Number of times pulled }}}$

- Expected regret is $O(\log T)$ with constant depending on $\mu^{*}-\mu^{(2)}$
- Gittins Index: optimal for $T \rightarrow \infty$
- Probability Matching / Thompson sampling

EXP3

- Given: $\gamma \in[0,1]$. Initialize: $w_{k}(t)=1$.
- In each round, choose k with probability $p_{k}=(1-\gamma) \frac{w_{k}(t)}{\sum w_{j}(t)}+\frac{\gamma}{K}$.
- Update weight of chosen arm as $w_{k}(t+1)=w_{k}(t) \exp \left(\gamma \frac{v_{k, t}}{K p_{k}}\right)$.
- Expected regret is $O(\sqrt{T K \log K})$

Strategic-armed bandits
 Braverman, Mao, Schneider and Weinberg (2019)

- $w_{k, t} \sim F_{k}$ is drawn, and arm k (if chosen) determines how much of $w_{k, t}$ to pass on, $v_{k, t}<w_{k, t}$.
- Differences from our setting: existence of outside option, our sellers do not know F_{k} and learn from buyer behaviour, prices act as a signal to buyer.

Negative result

Given any low-regret algorithm for the adversarial multi-armed bandit problem, there exists an instance of the strategic multi-armed bandit problem and an $o(T)$-Nash equilibrium for the arms where the principal earns at most $o(T)$ revenue. [As long as K is not too large]

- Arms collude via a market-sharing strategy - they calibrate their actions so that they each get played $1 / K$ of the time, while passing on little utility to the principal.

Positive result

There exists an algorithm for the principal that guarantees revenue at least $\mu^{(2)} T-o(T)$ when the arms are playing according to an $o(T)$-Nash equilibrium. [As long as μ^{*} and $\mu^{(2)}$ not too different]

- Three phases: 1) arms report truthfully, 2) the most valuable arm pays the principal the second-largest mean each round, 3) arms are compensated for cooperating in stage 1.
- Defections are punished by never being picked again.

Agenda

1. Introduce model
2. Literature review
a) Review of multi-armed bandit literature
b) 'Strategic-armed' bandits: Braverman, Mao, Schneider and Weinberg (2019)
3. Non-strategic benchmark
4. Negative results
5. Positive results
6. Conclusion and next steps

Pricing bandit regret analysis

- Classic stochastic/adversarial bandit algorithms do not translate directly to this setting, due to prices ('contextual bandit').
- Adapted notion of regret similar to Arora et al. (2012) 'policy regret':
- If faced with prices $\left(p_{1}(t), \ldots, p_{K}(t)\right)$, define least-regret choice as

$$
k^{*}(t)=\max _{k} \sum_{s=1}^{t} v_{k, t}-p_{k}(t) \stackrel{\mathbb{E}}{=} \max _{k} \mu_{k}-p_{k}(t)
$$

- Price-contextual regret is PRegret $=\sum_{t}\left(v_{k^{*}}(t), t-p_{k}(t)\right)-\sum_{t}\left(v_{k}(t), t-p_{k}(t)\right)$

Non-strategic no-regret algorithm

- Suppose that prices were chosen randomly, rather than strategically.

Claim

A modified UCB algorithm results in $O(\log t)$ expected PRegret for the buyer.

Algorithm

Initialize k-vectors $\hat{Q}(t)=(0,0, \ldots, 0)$ and $N(t)=(1,1, \ldots, 1)$.
At time t, if $\max _{\mathrm{k}} \hat{Q}_{k}(t)+\sqrt{\frac{c \log t}{N_{k}(t)}}-p_{k}(t)>0$, choose $k(t)$ as the argmax of this expression.
Otherwise, choose 'not buy'.
Observe utility $v_{k(t), t}-p_{k(t), t}$ and update $\widehat{Q}_{k}(t)=\frac{N_{k}(t) \widehat{Q_{k}}(t)+v_{k}(t), t}{N_{k}(t)+1}$, increment $N_{k}(t)$ by 1 .

Numerical illustration of modified UCB

- Setting: 3 sellers $k=1,2,3$ with $F_{1} \sim N(1.2,1), F_{2} \sim N(1.6,1), F_{3} \sim N(1.4,1)$
- Costs zero, pricing strategy: random on \{0.5,0.7,0.9, ..., 1.9\}

Buyer identifies values of arm fairly rapidly, and chooses the best one given the price. Regret is $o(T)$.

Numerical illustration of modified UCB (2)

- Rewards are $\Omega(T)$.

Remarks

- Clearly not the only low-regret algorithm.
- We could also use the usual UCB algorithm or any adversarial algorithm where each (arm, price) pair is treated as a separate arm, and the agent is presented a subset of such arms in each round

Agenda

1. Introduce model
2. Literature review
a) Review of multi-armed bandit literature
b) 'Strategic-armed' bandits: Braverman, Mao, Schneider and Weinberg (2019)
3. Non-strategic benchmark
4. Negative results
5. Positive results
6. Conclusion and next steps

‘Negative’ result

Theorem

Suppose A is a δ-low PRegret algorithm for the stochastic pricing bandit problem (or the adversarial pricing bandit problem with (seller, price) arms), where $\delta<o(T)$.

Then in the strategic bandit setting, where the buyer uses algorithm A, there exist distributions F_{i} and an $o(T)$-approximate Nash equilibrium for the sellers in which the buyer's expected time-averaged utility per round is small (in particular, equal to the average difference between μ_{k} and $\max _{p_{l l} \leq \mu_{k}} p_{k l}$) and the sellers extract almost all surplus.

Intuition: single seller

- Because the buyer is using a low-regret algorithm, they should almost always (i.e. $\Omega(T)$ of the time) accept a price $p<\mu$.
- Therefore, the seller can use a low-regret algorithm to explore the price-space and estimate the demand at various prices.
- If the seller chooses a price just below the mean of F_{1}, then the buyer will accept this price most of the time, and the expected time-averaged utility for the buyer will be the difference between μ_{1} and the price. The payoff for the seller is the price.
- Easily extends to the multi-good monopoly setting.

Illustration: single seller UCB

- Single seller with $F_{1} \sim N(1.4,1)$, zero costs, pricing set \{0.5,0.7,0.9,1.1,1.3,1.5,1.7,1.9\}
- Seller uses UCB algorithm to determine price.
- Buyer is using the pricing-contextual UCB algorithm (similar results if they use (arm, price) EXP3)

Illustration: single seller UCB (2)

Price	Proportion of time offered by seller	Proportion of time accepted by buyer
0.5	1.35%	85%
0.7	2.27%	95.6%
0.9	4.16%	97.5%
1.1	10.27%	98.9%
1.3	56.20%	99.7%
1.5	21.65%	82.3%
1.7	3.60%	52.2%
1.9	1.31%	25.5%

Many sellers: independent learning

- Under independent learning by sellers, no-regret learning by the buyer does quite well.
- Example: $F_{1} \sim N(1.2,1), F_{2} \sim N(1.6,1), F_{3} \sim N(1.4,1)$
- High-value seller offers lower prices to be chosen more often.
- c.f. Calvano et al. (2019)

Average seller 3 rewards over 1000 simulations of 1000 iterations

0.5	0.7	0.9	1.1	1.3	1.5	1.7	1.9
21%	16%	13%	11%	10%	10%	9%	9%

0.5	0.7	0.9	1.1	1.3	1.5	1.7	1.9
30%	33%	13%	8%	6%	4%	3%	3%

0.5	0.7	0.9	1.1	1.3	1.5	1.7	1.9
32%	20%	13%	10%	8%	6%	6%	6%

Many sellers: market-sharing strategy

- If sellers know F_{i}, then the problem is similar to Braverman et al. (2019).
- As long as means are not too different, seller can calibrate their actions so that they each get played $1 / K$ of the time, while passing on little utility to the principal.
- Without knowledge of F_{i}, sellers need to estimate demand for their goods.
- Intuitively, because the buyer is using a low-regret strategy, this should not be too difficult for the seller (the buyer need to be choosing optimally $\Omega(t)$ of the time).

Seller joint tâtonnement strategy

Strategy for seller \boldsymbol{k}

- Given parameters $\tau \sim O(\sqrt{\delta T})$ and β.
- Initialize: each seller selects a random price p_{k} in P_{k}.
- Each seller offers price p_{k}, observes counts N_{k} of sales by each arm.
- If $t=\tau n$ for $n>1$, each seller examines sales data for last τ periods:
- If over last τ periods, $N_{k}>\frac{\tau}{K}+\beta$, seller k increments price upwards.
- If over last τ periods, $N_{\text {no buy }}>\frac{\tau}{K}+\beta$, each seller decrements their price downwards.
- If any seller deviates from the strategy, play the lowest price above cost forever.

Claim: if $\frac{\max _{p \in P_{k} \cdot p \leq \mu_{k}}{ }^{p}}{K}>\max _{p \in P_{k}: p \leq \mu^{*}-\left(\mu^{(2)}-p_{\text {min }}\right)} p$, all sellers playing the above strategy is an $o(T)-$ Nash equilibrium.

Numerical illustration (1)

- Three sellers $v_{1} \sim N(1.3,1), v_{2} \sim N(1.5,1), v_{3} \sim N(1.4,1)$, zero costs.
- Buyer using modified UCB algorithm, sellers using joint tâtonnement strategy

Numerical illustration (2)

Agenda

1. Introduce model
2. Literature review
a) Review of multi-armed bandit literature
b) 'Strategic-armed' bandits: Braverman, Mao, Schneider and Weinberg (2019)
3. Non-strategic benchmark
4. Negative results
5. Positive results
6. Conclusion and next steps

| One-sided uncertainty

- Goal: to identify an algorithm for the buyer which results in them capturing a large share of the potential gains from trade.
- If sellers know their distribution F_{i}, then we modify an algorithm from Braverman et al. (2019).

Buyer algorithm

Initialize primitive: confidence level t^{*}.

1. Observe first price vector and set $p^{1}=\left(p_{1}^{1}, \ldots, p_{K}^{1}\right)$. Purchase from a random seller in period 1.
2. In subsequent periods:
a) Let p^{t} be the price vector offered by sellers. Purchase from remaining seller with largest 'gains from trade' $p_{k}^{1}-p_{k}^{2}$, iff they offer a price no larger than $p_{k}^{2}+\left(p_{k}^{1^{(2)}}-p_{k}^{2(2)}\right)$.
b) Track valuations of purchased goods. If average value \bar{v}_{k} of goods purchased from seller k ever fails a t-test of the hypothesis that $H_{0}: \mu_{k} \geq p_{k}^{1}$ given confidence level t^{*}, then never buy from seller k again.
3. In final periods, play each remaining arm sufficiently often that their rewards are larger than the expected benefits of misreporting their value in the first period (given t^{*}).

Seller approximately dominant strategy

- In period 1, choose $p_{k}^{1}=\mu_{k}$ (or the largest one smaller than it in the price set).
- In subsequent period, choose $p_{k}^{2}=c_{k}$ (or minimum price above this).
- In subsequent periods in phase 2 , seller with largest μ_{k} plays $\mu_{k}-\left(p_{k}^{1^{(2)}}-p_{k}^{2^{(2)}}\right)$ (or the nearest price below).
- e.g. if all costs are zero, this is just $\mu^{(1)}-\mu^{(2)}$.
- In subsequent periods in phase 2 , other sellers play c_{k} (or minimum price above this).
- In phase 3, all players play the maximum price.

| Two-sided learning (at least 2 sellers)

- Goal: to identify an algorithm for the buyer which results in them capturing a large share of the potential gains from trade.
- Additional challenge of buyer needing to learn values from experimentation, seller needing to infer valuations from buyer behavior.

Buyer algorithm

Initialize primitive: experimentation time $\tau=O(1)$.

1. Buyer commits to purchase from each arm a fixed number τ of times and forms an estimate of the mean value of the arm $\bar{x}_{k, t}$.
2. In subsequent periods:
a) Let p^{t} be the price vector offered by sellers. Purchase from remaining seller that offers price which maximizes $\bar{x}_{k, t}-p_{k}^{t}$, as long as this value is larger than zero (continuing to track mean value of arms pulled).
b) If any seller ever raises their price, never purchase from that seller again.

Seller approximately dominant strategy

- In first $K \tau$ periods, always play highest price.
- In subsequent periods, play highest price.
- If not chosen in some period, decrement price.

Analogous to a descending auction from the point of view of the buyer

- Somewhat unsatisfying: perhaps the sellers could commit to some strategy of their own to prevent the price from dropping to costs.

Agenda

1. Introduce model
2. Literature review
a) Review of multi-armed bandit literature
b) 'Strategic-armed' bandits: Braverman, Mao, Schneider and Weinberg (2019)
3. Non-strategic benchmark
4. Negative results
5. Positive results
6. Conclusion and next steps

Conclusion and next steps

Conclusions

- Strategic sellers can take advantage of buyers using bandit regret-minimization algorithms to learn values.
- Buyers can select algorithms to earn a large share of the surplus by exploiting competition between sellers.

Next steps

- Formalize preceding results.
- More to explore in this specific setting: Is there an algorithm for the buyer to capture surplus in single seller case? What about algorithms for the seller? Multiple buyers? A mixed population of strategic and non-strategic buyers? Bayesian strategic bandits?
- More general results on strategic bandits:
- Other settings, e.g. repeated matching setting of Das and Kamenica (2005)
- General theorems, characterization of algorithms.
- Algorithms as an equilibrium selection? Robustness to Knightian uncertainty.

