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Introduction

« We study a problem of trade in a setting with one buyer and many sellers with
differentiated goods, repeated interaction and two-sided uncertainty about valuations.

» Buyers and sellers engage in experimentation and seek to learn value distributions and
costs, and exploit information learned.

 Interpret as a ‘strategic armed bandit’ (as in Braverman et al. 2019).

« CS perspective: we seek algorithms for the buyer which provide payoff guarantees for
all possible value distributions / cost profiles.

+ ‘Negative’ result: classical bandit regret-minimizing algorithms may be exploited by sellers
and result in very low payoffs for the buyer.

« ‘Positive’ result: we describe an algorithm for buyers with good payoff guarantees given
optimal response by sellers.

« Economics perspective: algorithms act as a commitment device for the buyer
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Buyer’s payoff: v ) — pr(t) v =0

Prices
{P11rP12r ---»P1N1} =P

{p21»P22» ---:p2N2} =P,

{pm» Pk2y -+ pKNK} = Py

po =0

Cx

Arms will be
independent
sellers in this talk
but may be jointly
owned in some of
our results (a multi-
good firm).

Seller k’s payoff:

Unit demand in each period pr(t) — ¢y

Means: y; < oo
Finite variance

vy is realized for arm k(t),

Round t: observed only by buyer.
Sellers announce prices py (t) Buyer chooses one good k(t) Buyer receives v, — p; (t).
observed by everyone. to purchase (or no buy). Seller receives py(t) — ci. Round ¢+1
‘ b ‘ ‘ _ T rounds

Information structures:

« Mostly interested in two-sided uncertainty: neither buyer nor seller knows distributions F;.

«  Will also use one-sided uncertainty (seller knows F;) as a benchmark.
« Will usually assume all sellers see which arm the buyer chooses.



| Solution concept

» Typical approach in economics: Markov perfect equilibrium
* Not well-defined under ‘Knightian’ uncertainty about valuation distributions.
 Difficult! Likely non-unique, complicated.

« We take a CS-inspired approach
« Goal: An algorithm for the buyer with good payoff guarantees, assuming that
sellers are behaving ‘reasonably’.
« The algorithm should be robust to the distributions F, ..., Fx and costs ¢y, ..., ck.

« The algorithm will usually be random, in which case we seek payoff guarantees with high
probability or in expectation.

« The payoff guarantees might be relative to the maximal possible payoffs (‘regret’).

« Sellers will be playing dominant strategies / approximate Nash equilibria /
minimizing their own regret.
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| Multi-armed bandits: review

« DM chooses one of K arms each round, over T rounds.
« On choosing arm k(t), DM receives vy .

DM seeks to maximize Rev = Y{_; Vi) -
- Alternatively, DM minimizes Regret = max >ii=1 Vit — Rev

Bandit varieties

+ Stochastic bandit: v, . ~F iid

- Bayesian bandit: learner assumes distribution v, .~F (. |6) with prior (8) over 6.

 Adversarial bandit: v, , is chosen by some (possibly adaptive) adversary to maximize regret.

 Strategic bandit: w, . ~F} iid, if chosen arm k chooses v, ; < wy; to pass on, pocketing the residual for
themselves (Braverman, Mao, Schneider and Weinberg 2019)




| Bandit algorithms

« Typically, choosing
randomly gives 0(T)

regret. Stochastic Bandit
Vit ~Fk Sample mean of observed rewards + \/

UCB (Upper Confidence Bound)
e Choose arm at time t which maximizes

clogt

_ . Number of times pulled
 We are interested in

algorithms that result
in sublinear regret.

Expected regret is 0(logT) with constant depending on p* — u®

Bayesian Bandit
Vi e ~Fi (- 10)

Gittins Index: optimal for T — o
- Exploration vs 0~1(8) Probability Matching / Thompson sampling

exploitation trade-off

EXP3

« Given: y € [0,1]. Initialize: w, (t) = 1.

AC\EIEE{ELR o Ineach round, choose k with probability p, = (1 —y) ;’W"—% i
Bandit . !

« Update weight of chosen arm as wy (t + 1) = wy(t) exp (y ;Lp”';) .

« Expectedregretis 0(/TK logK)




Strategic-armed bandits

Braverman, Mao, Schneider and Weinberg (2019)

* wy~Fy is drawn, and arm k (if chosen) determines how much of wy, , to pass on, v ; < wy ;.

« Differences from our setting: existence of outside option, our sellers do not know F;, and learn from
buyer behaviour, prices act as a signal to buyer.

Negative result

Given any low-regret algorithm for the adversarial multi-armed bandit problem, there exists an
instance of the strategic multi-armed bandit problem and an o(T) —Nash equilibrium for the arms
where the principal earns at most o(T) revenue. [As long as K is not too large]

« Arms collude via a market-sharing strategy — they calibrate their actions so that they each get played 1/K of
the time, while passing on little utility to the principal.

Positive result

There exists an algorithm for the principal that guarantees revenue at least T — o(T) when the
arms are playing according to an o(T)-Nash equilibrium. [As long as u* and u® not too different]

« Three phases: 1) arms report truthfully, 2) the most valuable arm pays the principal the second-largest mean
each round, 3) arms are compensated for cooperating in stage 1.
« Defections are punished by never being picked again.
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| Pricing bandit regret analysis

Goods/Arms Values Prices

ARETEER vf {paopiopin} =P
e
< IETER v (e v} = P

Good K
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Costs

Arms will be
independent
sellers in this talk
~| but may be jointly
owned in some of

Cq

o]

our results (a multi-
good firm).

Ck

Seller k’s payoff:
Pr(t) —cx

« Classic stochastic/adversarial bandit algorithms do not translate directly to this setting,

due to prices (‘contextual bandit’).

« Adapted notion of regret similar to Arora et al. (2012) ‘policy regret’:
 |f faced with prices (p,(t), ..., px (t)), define least-regret choice as
t

E
() = max ) v, — pe(t) = max g — pi(t)

s=1

* Price-contextual regret is Pﬁegret =2t — Pr(®)) — Xe(Wko),e — Pr (1))
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Non-strategic no-regret algorithm

« Suppose that prices were chosen randomly, rather than strategically.

A modified UCB algorithm results in 0(logt) expected PRegret for the buyer.

Algorithm
Initialize k-vectors Q(t) = (0,0, ...,0) and N(¢t) = (1,1, ...., 1).

clogt

At time ¢, if maxy Q, (t) + N ()

— pi(t) > 0, choose k(t) as the argmax of this expression.

Otherwise, choose ‘not buy’.

Nk (©Qr(O)+v(p) ¢
Nk(t)+ 1

Observe utility vy — P, @and update Q,(t) = , increment N, (t) by 1.
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Average Regret

Numerical illustration of modified UCB

- Setting: 3 sellers k = 1,2,3 with F;~N(1.2,1), F,~N(1.6,1), F3~N(1.4,1)
« Costs zero, pricing strategy: random on {0.5,0.7,0.9, ..., 1.9}

Average regret over 1 simulation, 1000 periods Average Regret over 1000 Simulations of 1000 iterations
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Buyer identifies values of arm fairly rapidly, and chooses the best one given the price.

Regret is o(T). -



| Numerical illustration of modified UCB (2)

Rewards

Cumulative rewards, 1 iteration over 1000 periods Cumulative rewards over 1000 simulations of 1000 iterations
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« Rewards are Q(T).

Remarks
« Clearly not the only low-regret algorithm.
« We could also use the usual UCB algorithm or any adversarial algorithm where each
(arm, price) pair is treated as a separate arm, and the agent is presented a subset of such
arms in each round ”
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| ‘Negative’ result

Suppose A is a §-low PRegret algorithm for the stochastic pricing bandit problem (or the
adversarial pricing bandit problem with (seller, price) arms), where § < o(T).

Then in the strategic bandit setting, where the buyer uses algorithm A, there exist
distributions F; and an o(T)-approximate Nash equilibrium for the sellers in which the buyer’s
expected time-averaged utility per round is small (in particular, equal to the average

difference between yu; and max pr1) and the sellers extract almost all surplus.
PrisUk
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Intuition: single seller

« Because the buyer is using a low-regret algorithm, they should almost always (i.e.
Q(T) of the time) accept a price p < p.

« Therefore, the seller can use a low-regret algorithm to explore the price-space and
estimate the demand at various prices.

* If the seller chooses a price just below the mean of F;, then the buyer will accept
this price most of the time, and the expected time-averaged utility for the buyer will
be the difference between u,; and the price. The payoff for the seller is the price.

 Easily extends to the multi-good monopoly setting.



| lllustration: single seller UCB

Single seller with F;~N(1.4,1), zero costs, pricing set {0.5,0.7,0.9,1.1,1.3,1.5,1.7,1.9}
Seller uses UCB algorithm to determine price.

Buyer is using the pricing-contextual UCB algorithm (similar results if they use (arm, price) EXP3)

Average buyer regret over 1000 simulations of 1000 iterations
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| lllustration: single seller UCB (2)

Proportion of Proportion of
Average seller payoffs over 1000 simulations of 1000 iterations time offered by | time accepted
141 _ seller by buyer
12 4
10 ( 0.5 1.35% 85%
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= i
: 0.9 4.16% 97.5%
0.7 11 10270/0 989%
004 | | | | | | 1.3 56.20% 99.7%
0 200 400 &00 800 1000
Iterations 1.5 21.65% 82.3%
1.7 3.60% 52.2%
1.9 1.31% 25.5%
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| Many sellers: independent learning

Cuﬂra’tnjulative buyer rewards over 1000 simulations of 1000 iterations

« Under independent learning by sellers, no-regret 00 1
learning by the buyer does quite well. %mn
- Example: F;~N(1.2,1), F,~N(1.6,1), F;~N(1.4,1) R
 High-value seller offers lower prices to be chosen more )
often. 0 200 400 600 800 1000
[terations

« c.f. Calvano et al. (2019)

Average seller 2 rewards over 1000 simulations of 1000 iterations  Average seller 3 rewards over 1000 simulations of 1000 iterations

Average seller 1 rewards over 1000 simulations of 1000 iterations
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| Many sellers: market-sharing strategy

« If sellers know F;, then the problem is similar to Braverman et al. (2019).

» As long as means are not too different, seller can calibrate their actions so that they
each get played 1/K of the time, while passing on little utility to the principal.

« Without knowledge of F;, sellers need to estimate demand for their goods.

 |Intuitively, because the buyer is using a low-regret strategy, this should not be too
difficult for the seller (the buyer need to be choosing optimally Q(t) of the time).



Seller joint tatonnement strategy

Strategy for seller k

- Given parameters t~0(V/8T) and .

- Initialize: each seller selects a random price p; in P;.

- Each seller offers price p,, observes counts N,, of sales by each arm.
 Ift =tnforn > 1, each seller examines sales data for last t periods:

 |f over last t periods, N, > % + B, seller k increments price upwards.

- If over last 7 periods, Nyq pyy > % + B, each seller decrements their price downwards.
If any seller deviates from the strategy, play the lowest price above cost forever.

max

Claim: if 226220k max p, all sellers playing the above strategy is an o(T) —Nash
K pEPp<p* —(U D —ppmin)

equilibrium.



| Numerical illustration (1)

* Three sellers v;~N(1.3,1), v,~N(1.5,1), v3~N(1.4,1), zero costs.

« Buyer using modified UCB algorithm, sellers using joint tatonnement strategy

Average cumulative regret, 1000 simulations with 1000 periods Average cumulative rewards, 1000 simulations with 1000 periods
0.8 - &0
0.7 - a0
06 1
it . Ui} 2':' 7
i 05 E
g =
& 04 jr oA
03 4
0.2 A —20
e L’-'_‘--!—\_.-\_.—-—'_'_'_'_
I}l ] ] ] ] ] ] _4I:I ] ] ] ] ] ]
0 200 400 BO0 Boa 1000 0 200 400 BO0 Boa 1000
Iterations Iterations

23



Rewards

| Numerical illustration (2)

Average seller payoffs, 1000 simulations with 1000 periods Average seller prices, 1000 simulations with 1000 penods
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| One-sided uncertainty

« Goal: to identify an algorithm for the buyer which results in them capturing a large share of the
potential gains from trade.

« |If sellers know their distribution F;, then we modify an algorithm from Braverman et al. (2019).

Buyer algorithm Seller approximately dominant strategy
Initialize primitive: confidence level t*.  In period 1, choose pi = uy (or the largest one smaller
1. Observe first price vector and set p! = (pi, ..., p%). Purchase from than it in the price set).
a random seller in period 1. « In subsequent period, choose pZ = ¢, (or minimum
2. Insubsequent periods: price above this).

a) Let p! be the price vector offered by sellers. Purchase from * In subsequent periods in phase 2, seller with largest
remaining seller with largest ‘gains from trade’ p; — p?, iff 1w, plays uy, — (Pim _ P;%(Z)) (or the nearest price
they offer a price no larger than p? + (p,%(z) - p,i(z)) : below).

b)  Track valuations of purchased goods. If average value v,, of « e.g.if all costs are zero, this is just u® — @,
goods purchased from seller k ever fails a t —test of the * In subsequent periods in phase 2, other sellers play c;
hypothesis that H,: u;, = p; given confidence level t*, then (or minimum price above this).
never buy from seller k again. * In phase 3, all players play the maximum price.

3. Infinal periods, play each remaining arm sufficiently often that
their rewards are larger than the expected benefits of
misreporting their value in the first period (given t*).



Two-sided learning (at least 2 sellers)

« Goal: to identify an algorithm for the buyer which results in them capturing a large share of the
potential gains from trade.

« Additional challenge of buyer needing to learn values from experimentation, seller needing to
infer valuations from buyer behavior.

Buyer algorithm Seller approximately dominant strategy
Initialize primitive: experimentation time 7 = 0(1). « Infirst Kt periods, always play highest price.
1. Buyer commits to purchase from each arm a fixed number t of * In subsequent periods, play highest price.
times and forms an estimate of the mean value of the arm x;, .. « If not chosen in some period, decrement price.
2. In subsequent periods:

a) Let p® be the price vector offered by sellers. Purchase from Analogous to a descending auction from the

remaining seller that offers price which maximizes %, ; — py., point of view of the buyer
as long as this value is larger than zero (continuing to track
mean value of arms pulled).
b) If any seller ever raises their price, never purchase from that
seller again.

« Somewhat unsatisfying: perhaps the sellers could commit to some strategy of their own to
prevent the price from dropping to costs.
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Conclusion and next steps

Conclusions

« Strategic sellers can take advantage of buyers using bandit regret-minimization algorithms to learn
values.

» Buyers can select algorithms to earn a large share of the surplus by exploiting competition between
sellers.

Next steps
« Formalize preceding results.

« More to explore in this specific setting: Is there an algorithm for the buyer to capture surplus in single
seller case? What about algorithms for the seller? Multiple buyers? A mixed population of strategic and
non-strategic buyers? Bayesian strategic bandits?

« More general results on strategic bandits:

« Other settings, e.g. repeated matching setting of Das and Kamenica (2005)
« General theorems, characterization of algorithms.
« Algorithms as an equilibrium selection? Robustness to Knightian uncertainty.



