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Abstract

How does an expert’s ability persuade change with the availability of messages? We

study games of Bayesian persuasion the sender is unable to fully describe every state

of the world or recommend all possible actions. We characterize the set of attainable

payoffs. Sender always does worse with coarse communication and values additional

signals. We show that there exists an upper bound on the marginal value of a signal for

the sender. In a special class of games, the marginal value of a signal is increasing when

the receiver is difficult to persuade. We show that an additional signal does not directly

translate into more information and the receiver might prefer coarse communication.

Finally, we study the geometric properties of optimal information structures. Using

these properties, we show that the sender’s optimization problem can be solved by

searching within a finite set.
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1 Introduction

Language is a coarse and imperfect tool, especially when the topic is complicated. Credit

rating agencies use grades to describe the riskiness of a financial asset to their clients. Schools

use letter grade schemes to summarize the performance of students to potential employers.

Governmental agencies rate the hygiene practices of restaurants or the energy efficiency

of electrical appliances using grades to provide information to consumers. In all of these

examples, agents communicate about a complex subject by using a coarse set of signals.

In some settings coarseness is unavoidable, while in others it is a choice. A patient

interacting with a doctor might ask for advice on whether they should go through with a

specific treatment. There may be multiple actions that they do not wish to consider, such

as a surgical procedure. In general, when an agent is asking for advice from an expert, they

might find it beneficial to limit the expert’s communication capacity, and what actions the

expert can recommend. This is especially important when the preferences are misaligned.

Limits on communication can also be imposed by a social planner or a regulator, when the

parties involved lack such power. For example, in settings where firms use advertising to

send product information, a regulator might find that limiting the targeting capability of

advertisers is welfare improving for consumers.

In this paper, we study coarseness in communication in settings where the sender has

commitment power. We use the Bayesian persuasion framework to model such interactions.

Our purpose for this study is not to focus on why coarseness arises, but instead to understand

how it affects communication, and how the resulting interaction compares with the rich

communication setting. Coarseness naturally arises in many real life interactions due to

technological, institutional or regulatory constraints. These settings cannot be fully captured

using the standard Bayesian persuasion model, which assumes access to a large set of signals

that can describe every state of the world. Our work also provides a natural extension of

the current literature, by showing how existing techniques extend to these environments.

In the analysis of canonical games of Bayesian persuasion, existence proofs and solution

techniques rely on having access to rich signal spaces.1 The sender can induce as many

actions as they want, and the only restriction is that a convex combination of the posterior

beliefs generated is equal the prior. In our setting, the convex combinations must involve a

limited number of posteriors. Focusing on these constrained convex combinations, we extend

the concavification approach used in the literature to characterize the set of attainable sender

1These results generally leverage the extremal representation theorems of Caratheodory and Krein-
Millman (Kamenica and Gentzkow 2011), which does not directly apply to our setting.
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payoffs. The resulting function allows us to visualize how achievable sender utilities change

as a function of the prior belief, and as a function of the cardinality of the signal space.

We then focus on the marginal value of a signal for the sender. In the applications of

our model, this value is of particular economic interest. In the leading example we study, it

corresponds to the value of increasing the targeting ability of an advertiser relaying product

information to potential customers. We prove an upper bound on the marginal value of a

signal that applies for any game of persuasion. The result is derived through a novel insight

linking the sender’s optimal signals with finer and coarser communication. Our result implies

that in settings with large state and action spaces, the marginal value of a signal becomes

a very small fraction of the rich communication payoff as we increase the size of the signal

space. In other words, having access to more signals cannot change the sender’s payoff by

a large amount as we approach rich communication. However, this does not imply that the

marginal value of a signal is necessarily a decreasing function in all persuasion games.

We provide a detailed analysis of the marginal value of signals under a general preference

structure which we call belief-threshold games. In these settings, the receiver has a different

preferred action for every state, taken only if their posterior belief for that state is above a

certain threshold. There is a default action taken under the prior when none of the thresholds

are met, which is the sender’s least preferred action. The sender’s payoff does not depend

on the state and only depends on the receiver’s action, and the threshold values represent

the difficulty of convincing the receiver to take an action. These preferences capture many

economic settings that have been the focus of previous work, such as buyer-seller interactions

involving different goods (Chakraborty and Harbaugh 2010) and advice-seeking settings

involving multiple possible actions (Lipnowski and Ravid 2020).

In these games, we show that the marginal value of a signal is increasing for ‘skeptical’

priors that are maximally distant from the belief thresholds, and decreasing for priors that are

already close to one of the belief thresholds. With a constrained signal space and maximally

skeptical priors, the sender can satisfy Bayes plausibility only when they induce their least

preferred action. If the prior is further away from the thresholds, the probability of inducing

the least preferred action has to increase, which implies that the value of an additional signal

will be higher.

The remainder of our contributions are theoretical in nature. We provide a simple proof

showing the existence of an optimal strategy for the sender in coarse communication settings,

and the tools to constructively find solutions of coarse persuasion games. We characterize

the properties of the solutions of these games using techniques from affine geometry: one
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of our results shows that the search for optimal information structures can be restricted

to affinely independent posteriors. The result is based on the observation that inducing

affinely dependent posteriors proves to be ’inefficient’ for the sender, even when there are no

explicit costs associated with using more signals. We show that when inducing an action,

the sender prefers to generate the most extreme beliefs possible through their signals. We

capture extremeness of beliefs by studying different degrees of extreme points of a set. Using

this property, we show that the search for an optimal solution can be restricted to a finite

set. From this, we derive a finite procedure to find a sender-optimal information structure,

which applies to both coarse and rich communication settings.

Finally, we show that the tools we develop can be extended and used in other settings

involving strategic communication, such as cheap talk games with state-independent prefer-

ences. Our framework therefore opens many avenues for future research, and can be used

to analyze how the sender’s value for increased communication capacity depends on their

commitment power and the level of disagreement in prior beliefs.

1.1 Related Literature

Questions relating to limitations of language and implications of coarse communication have

been studied in common-interest coordination games (Blume 2000; Blume and Board 2013;

De Jaegher 2003) and cheap talk games (Jager et al. 2011; Hagenbach and Koessler 2020).

The main difference which separates our work from this line of research is the potential

for misaligned preferences between the sender and the receiver, and the sender’s ability to

commit to a signaling scheme (Kamenica and Gentzkow 2011).

Some recent papers interpret this communication procedure with commitment as the

strategic design of an ‘experiment’ which reveals information about the state of the world

(Kolotilin 2015; Alonso and Camara 2016). From this perspective, our model can be seen

as imposing restrictions on the set of possible experimental procedures. In this framework,

sender publicly designs a Blackwell experiment. Then, the receiver sees the realization of the

experiment and chooses an action. This line of work generally assumes that the sender can

design any experiment. This assumption is recently challenged by Ball and Esṕın-Sánchez

(2021) and Ichihashi (2019).

Ball and Esṕın-Sánchez (2021) studies a model of experimental persuasion, where sender

has access to a feasible set of experiments and can commit to garble the outcomes. Our

model can be thought as a scenario where the sender has access to experiments with only

a limited set of outcomes. For example, FDA regulates the standards of a clinical trial,
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prosecutors are limited about what constitutes an evidence and who qualifies as a witness,

and experiments on humans can only stratify and control certain variables due to ethical

constraints. Ichihashi (2019) studies a persuasion game in which the receiver can limit the

Blackwell informativeness of the information structures. We show that optimal informa-

tion structures under different cardinality constraints are not always Blackwell comparable.

Hence, cardinality and Blackwell informativeness constraints lead to different outcomes in

general.

Another stream of literature introduces a cost for generating more precise information

structures e.g. Gentzkow and Kamenica (2014) assume that the costs are proportional to

the reduction in the entropy of prior beliefs. While entropy or Blackwell informativeness

measures also put constraints on the sender’s problem, this approach still allows for arbi-

trarily many action recommendations (possibly subject to a cost), and existence results rely

on having a high dimensional signal space.

Similiar papers analyze settings where agents have preferences that take into account both

the outcome of the persuasion game and the complexity of information structures induced

(Wei 2018; Bloedel and Segal 2018). Although we don’t focus on behavioral limitations in

this paper, the tools we develop can also be used to motivate settings where larger signal

spaces and complicated signal structures create mental burdens on the receiver or the sender.

Our paper complements this line of work, as it can be used to analyze the cost of sending

or receiving one more message, instead of using information theoretic costs. In our setting

with a smaller signal space, Bayesian updating involves fewer operations and there are fewer

contingencies for the actors to take into account.

Another possible disruption to communication quality is noise. In the models that enter-

tain this possibility, signals chosen by the sender can be misinterpreted or transformed due

to the imperfections in the channel (Akyol et al. 2016; Le Treust and Tomala 2019; Tsakas

and Tsakas 2018). Substantively, the difficulty in communication caused by noisy channels

is different from our setting with coarse channels. With coarse communication, the sender

strategically chooses which directions in the belief space they want to be more ‘precise’ about,

instead of an exogenous noise structure making the communication imprecise.

In terms of the mathematical techniques we develop, our work is also related to Lipnowski

and Mathevet (2017) and Dughmi et al. (2016). Lipnowski and Mathevet (2017) characterize

the properties of optimal information structures in signal-rich settings relying on extremal

representation theorems from convex analysis. We provide a similar result that applies to

both rich and coarse communication settings. Dughmi et al. (2016) also analyze limited signal
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spaces, but take a computational perspective and focus characterizing on the algorithmic

complexity of approximating optimal sender utility.

The rest of the paper is organized as follows. We start by analyzing an application of

our model to targeted advertising in 2. Section 3 beings by giving the full mathematical

description of the persuasion games we study, and provides the description of the adjusted

concavification method in 3.1, and the properties of optimal information structures in 3.3.

Section 3.2 proves a lower bound result on the marginal value of a signal, and 4.1 focuses

on analyzing the marginal value of a signal in a specific class of persuasion games with

assumptions on sender and receiver preferences. In Section 4, we show how to extend our

methods to various other strategic communication games. Proofs and additional results are

provided in the appendix.

2 Example: Targeted Advertising

We begin by analyzing a simple setting with three states, in order to visualize our key insights

using a utility function defined over a three dimensional simplex.2

Suppose that different types of customers arrive to an online platform, according to

a known distribution. An advertiser observes the characteristics (demographics, location,

browsing history etc.) of the arriving customers and must decide on what type of advertise-

ment to show to the customer conditional on this observation. For ease of demonstration,

we suppose different types of customers correspond to three different segments of the popu-

lation. In this sense, our example is a three dimensional version of the examples in Rayo and

Segal (2010) and Kamenica and Gentzkow (2011), where the state is an underlying random

‘prospect’ which captures the quality of the match between the product characteristics and

the customer.

We represent the state space by Ω “ tω1, ω2, ω3u, corresponding to customers with differ-

ent characteristics arriving to the platform. The state ω1 represents preferences and tastes

that are not aligned with the product sold by the advertiser, ω2 represents weak alignment,

and ω3 represents strong alignment. We will assume a prior µ0 “ p0.65, 0.1, 0.25q, which is a

vector representing the prior probabilities of ω1, ω2, ω3.

The advertiser learns the state of the world by observing the characteristics of the cus-

2Note that our analysis of coarse communication becomes interesting only if the state space (or the
action space, depending on the binding constraint) has at least three elements. If the state space has two
elements, constraining the signal space to be smaller leads to no information transmission since the sender
will have access to only one signal.
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tomer and inferring the quality of the match. The state is initially unknown to the customer,

who doesn’t know the properties of the product sold by the advertiser. Formally, the sender’s

(advertiser’s) signaling strategy is a mapping from the set Ω to the distributions over the set

of available of signals ∆pSq. In practice, the advertiser chooses a distribution over different

kinds of ads given the observed characteristics of a customer. The commitment assumption

is consistent with advertisers setting up a targeted advertising campaign specifying which

ad to show to each type of customer, that they will commit to for some fixed length of time.

In this world, an additional signal can be interpreted as increased targeting ability: the

sender can use another type of ad and show it to different types of customers. Limitations

on the set of signals can represent institutional constraints such as regulation on targeting,

or technological constraints on how fine targeting can be in this environment.

Figure 1: Action regions, and the receiver and sender utility over the belief space. The figure on the left
gives a top-down view of the belief space, showing regions where each action is optimal. The three corners
of the simplex correspond to the beliefs about each one of the states. The center figure plots the receiver
utility as a function of induced beliefs. The receiver utility is piecewise maximum of expected utility of fixed
actions that are optimally chosen depending on the posterior belief. The beliefs where ai is the optimal
action corresponds to the action zone i labeled on the top. Receiver prefers taking action ai when the state
is ωi with high probability, and takes action a0 when his beliefs are uncertain about all of the states. The
right figure plots the sender utility as a function of induced beliefs. The sender prefers the receiver to take
actions 2 and 3, over actions 0 and 1. The black dot and the black line represent the location of the prior.

The actions available to the receiver are represented by the set A “ ta3, a2, a1, a0u, and

the optimal action depends on their beliefs. The actions correspond to different levels of

engagement with the ad.

In this example, we suppose that for every state there exists a unique optimal action

and there is a unique safe action when there is large uncertainity. Similiar preferences

are studied in the literature for different contexts (Sobel 2020; Chakraborty and Harbaugh

2010; Lipnowski and Ravid 2020). To put this into the context of targeted advertising on

a platform, action a3 represents a purchase, which is optimal if the customer’s preferences
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match the product sold by the advertiser (ω3). The action a2 represents a click without

a purchase, which is optimal when there is a weak match (ω2). The action a1 represents

ignoring or hiding the ad, which is optimal when the customer’s preferences are not aligned

to the product (ω1). The default action under the prior a0 represents an impression with no

interaction at all, and is the optimal action when the beliefs are not precise in any particular

direction. Moreover, the receiver gains some utility from reducing the uncertainty in their

prior. Their utility is convex and weakly increasing in all beliefs, and strictly increasing in

their beliefs of the states ω2 and ω3. This represents the customers having preferences towards

‘informative’ advertising that reduces uncertainty in their beliefs, making them strictly better

off if they learn about a product which at least partially suits their preferences. The receiver’s

utility function is shown in Figure 1.

The sender only cares about the action taken by the receiver, and not the state. Hence,

the sender utility function is constant when the receiver’s action is fixed. They prefer en-

gagement (either in the form of a donation a3, or a click a2) over no engagement or hiding

the ad. Thus, we assume that receiver actions a3 and a2 give equal utility to the sender, and

a1 and a0 are the least preferred actions. We plot the sender utility in Figure 1.3

Given access to three signals, or the possibility of showing three different ads depending on

customer characteristics, the advertiser induces actions a3, a2, a1 depending on the state. The

optimal signaling strategy induces the posteriors tp1, 0, 0q, p1{3, 2{3, 0q, p1{3, 0, 2{3qu with

respective probabilities p0.475, 0.15, 0.375q. This strategy reveals the state ω1 with signal s1,

but sends less precise signals s2 and s3 that mix states ω2 and ω3 with ω1. In other words,

the sender induces the least convincing belief that will make the receiver indifferent between

actions a0 and a2 (or a3). This is the choice which maximizes the ex-ante probability that

the receiver will take actions a2 or a3.

This solution can be found by inspecting the concavification of sender utility, as described

by Kamenica and Gentzkow (2011). Given access to a rich signal space, the sender can induce

as many posteriors as they want. If the sender is constrained to using two signals, the optimal

strategy cannot be found using the standard concavification method, because we can only

3The assumption of equal utilities is for visual clarity and can be easily relaxed. The results generalize
to the case with unequal utilities for different actions. We set receiver utility to be uRpai, µq “ xβi, µy for
some coefficient vectors βi, where x¨, ¨y denotes scalar product. We specify the β coefficients so that when the
belief µ “ pµ1, µ2, µ3q has coordinate µi ą Ti, the action ai is optimal. Namely, for a given β0 “ rβ1

0 , β
2
0 , β

3
0s

vector for the action a0, and k1, k2, k3, representing how much the receiver prefers actions a1, a2, a3 compared
to a0, we define the remaining vectors βi as : βj

i “ βj
0 ` kj if j “ i, and βj

0 ´
Tj

1´Tj
kj if j ‰ i. For this

specific example, we draw and solve for the optimal sender strategy with the receiver preferences defined
using β0 “ r´250{3, 500{3, 500{3s, β1 “ r0, 0, 0s, β2 “ r´150, 200, 100s, β3 “ r´150, 100, 200s.
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use convex combinations consisting of at most two points from the graph of the sender utility

function.

Figure 2: Two-signal information structures drawn over the belief space. The black dot represents the
prior, and the dashed red and black lines represent information structures.

Since in this example sender’s preferences are independent of the state, when they can

induce two actions, they maximize the probability that the receiver takes the more preferable

action, under the Bayes plausibility constraint. Given posteriors in a fixed action region,

the sender will either want the posterior to be as close as possible, or as far as possible from

the prior. Geometrically, this implies we can restrict our search to line segments supported

on the corners and edges of the action regions, passing through the prior. There are finitely

many such candidates, and we draw some examples in Figure 2.4

As a preview of our results, observe that the posteriors induced in figure 2 incorporate

at least one extreme point of one of the three action regions. This geometric property

generalizes to higher dimensions and different orders of extreme points, generalizing results

from Lipnowski and Mathevet (2017). This property will help us provide a finite procedure

to construct solutions to Bayesian persuasion games.

With the optimal signal, the sender will choose to induce actions a3 and a1, using the

posteriors tp1, 0, 0q, p0.07, 0.27, 0.66qu with respective probabilities p0.63, 0.37q. This infor-

mation structure maximizes the probability of the action 3 while minimizing the probability

of action 1. In other words, it minimizes the ratio of the distance between the prior and the

posterior that leads to the desired action, and the distance between the prior and the pos-

terior that leads to the undesired action. Sender utility and optimal information structures

4For simplicity of illustration, we parametrize preferences such that the action region boundaries are
parallel to the simplex boundaries, and the sender utility is state-independent. Our conclusions in this
section are not restricted to this case.
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are shown in Figure 3.

Figure 3: Optimal information structures with 3 signals (blue, left) and 2 signals (red, right) shown over
the sender utility function. In this representation, a signaling scheme is a triangle (with 3 signals) or a
line segment (with 2 signals), passing through the prior to satisfy the Bayes plausibility constraint. With
3 signals, the sender chooses to optimally induce actions 1,2, and 3. With 2 signals, their choice is limited,
and they optimally induce actions 1 and 3. The expected sender utility is the point at which the information
structures intersect with the black line representing the prior.

The receiver’s utility in the equilibrium with three signals and two signals is drawn in

Figure 4. We see that under certain conditions, the receiver will be better off in the equi-

librium with two signals. This is only possible when there is a misalignment in preferences:

in this setting, the sender only cares about actions, where the receiver wants to have more

precise posteriors in certain directions. Limiting the sender’s targeting ability results in an

optimal signaling strategy which generates more precise posteriors in these directions. This

implies that the customers will be better off if the targeting capabilities of the advertiser

are limited. Note that if the preferences of the two agents are perfectly aligned, the receiver

would never want to limit the Sender.

We can mathematically characterize conditions on receiver utility such that coarse com-

munication makes them better off.5 If the customers get high enough utility from reducing

the uncertainty in their beliefs, limiting the targeting capability of the advertiser would make

them better off.

It seems counter-intuitive that receivers who benefit from more precise posteriors would

prefer to limit the communication capacity of the sender. Indeed, receiver preferences are

convex over the belief space, so they (weakly) benefit from more precise information globally.

5As long as the slope parameters β2
0 , β

3
0 for the action region a0 are high enough, the receiver will prefer

the 2-signal outcome over the 3-signal outcome.Generally for the parametric preferences we defined, this
condition can be written as β2

0 ` δβ3
0 ą 0 with δ depending on the prior belief. For our example, δ « 0.85.

10



Figure 4: Receiver utility (yellow surface) over the belief space. The beliefs induced by the optimal 3-
signal solution and the 2-signal solution to the sender’s problem are drawn in blue and red, respectively.
The expected receiver utility is the point at which the information structures intersect with the black line
representing the prior. If the slope of the receiver utility is high enough in the middle region corresponding
to a0, the receiver will be better off if the sender has access to only 2 signals.

However, as one can see in Figure 3, limiting the cardinality of the signal space does not

necessarily result in less precise posteriors being induced at the equilibrium. In fact, the three

signal and the two signal optimal information structures are not Blackwell-comparable.

Intuitively, the sender has the ability to choose which directions in the belief space they

want to be more precise about, using the limited set of signals they have access to. This

stands in stark contrast to settings with noisy communication, where increasing the amount

of noise would necessarily result in less precise posterior distributions at the equilibrium.

Figure 5: The left figure shows the maximum achievable sender utility with 3 signals, and the center figure
shows the maximum achievable sender utility with 2 signals as a function of the prior beliefs. The black
lines correspond to the prior belief given in the example. The right figure plots the value of having access
to the third signal for the sender, as a function of the prior belief. This is the difference between the two
surfaces plotted in the top row. The third signal is more valuable when the prior is in a region where the
sender needs to induce their least favorite action (a1) with high probability.

We can also characterize the utilities achievable by the sender for any prior belief, using a
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modified concavification method. We can plot the set of points that can be represented as the

convex combination of at most 2 points from the graph of the sender utility function. This

technique allows us to represent the achievable utilities for the sender as a function of the

prior in Figure 5. The sender’s utility is lower with two signals, hence they would be willing

to pay to get access to additional signals, or increased targeting ability in their advertising

strategy. The marginal value of a signal for any prior belief can be calculated through the

difference of the two surfaces in the top row of Figure 5. We can see that there are priors

where the signal space constraint is not binding, and the value of an additional signal is zero.

These correspond to priors where the probability of state ω2 and ω3 are high, so the sender

can satisfy the Bayes plausibility constraint by inducing the actions a2 (engagement) and

a3 (donation) without inducing a1. Having access to a third signal is especially valuable for

priors where the sender has to induce their least favorite action a1 more frequently.

3 The Model

We consider the classic Bayesian persuasion game of Kamenica and Gentzkow (2011) ex-

tended to limited signal environments. As in their paper, we focus on a finite persuasion

problem in this paper.

Players: There are two agents. We call them the Sender (she) and the Receiver (he), who

are communicating about an uncertain state of the world.

Environment: The state of the world ω can take values from a finite set Ω, which has

cardinality |Ω| “ n. The receiver’s actions are denoted with a P A with |A| “ m. Sender

communicates with the receiver using signals s P S with |S| “ k.6 Critically, we focus on

the case where 2 ď k ă mintm,nu. The setting where |S| “ k “ 1 is trivial since there will

be no information transmission.

Payoffs: The sender and the receiver have utility functions which can depend on the state

of the world and the receiver’s action, respectively denoted by: uS, uR : Ω ˆ A Ñ R.
Information: The agents share a prior belief about the state of the world, µ0, which is

assumed to be in the interior of ∆pΩq.

Timing: The sender chooses a signaling policy π which maps the realization of the states

ω P Ω to a probability distribution over signals ∆pSq. A more convenient way to denote

signaling policy is to consider it as a collection of conditional probability mass functions

6As a general fact, signals don’t carry any meaning ex-ante, and obtain a meaning via the signaling
policy at the equilibrium.

12



tπp.|ωquωPΩ over the signal space S. We denote the set of all signaling policies π : Ω Ñ ∆pSq

with Π. After the choice of a signaling policy π, a state ω is realized. Sender follows the

announced signaling policy and sends a signal according to probability distribution πps|ωq.

Receiver observes the realized signal and takes an action.

Given the sender’s signaling strategy π P Π, realization of each signal s leads to a posterior

µs for the receiver, calculated by Bayes’ Rule. Before the realization of the state and hence

the signal, the signaling strategy π induces a distribution over posterior beliefs τ P ∆p∆pΩqq

with supp pτq “ µ “ tµsusPS defined by:7

τpµ̃q “
ÿ

s:µs“µ̃

ÿ

ω1PΩ

π ps | ω1
qµ0 pω1

q @µ̃ P ∆pΩq.

We can interpret the support of this distribution as the set of posteriors induced by π. The

induced set of posteriors are denoted as µ “ pµ1, . . . , µkq P ∆pΩqk with µi :“ µsi . Note that,

with only k signals, the sender can induce at most k different posteriors. The assumption

that k ă mintm,nu is the reason behind sender’s inability to recommend every possible

action or describe every possible state perfectly. Unlike the classical Bayesian persuasion

setup, the sender faces an additional problem, and has to decide which collection of actions

to induce. Formally, because sender has access to only k signals, they can induce at most k

different beliefs. This is the only additional restriction imposed by coarse communication.

After forming the posterior µs, the receiver chooses an action from the set Âpµsq “

argmaxaPA Eω„µsu
Rpa, ωq.8 The existence of this maximum is guaranteed since A is a com-

pact set and upa, ωq is continuous. If the receiver is indifferent between multiple actions, we

assume that the indifference is resolved by picking the action that is preferred by the sender.9

If there are multiple such elements that maximize the sender’s utility, we pick an element

from Âpµsq arbitrarily. We denote the sender-optimal action from the set of receiver-optimal

actions at belief µs by âpµsq.Sender’s expected utility from π P Π is:

US
pπq :“

ÿ

ωPΩ

µ0pωq
ÿ

sPS

πps|ωquS
pâpµsq, ωq

7supp pτq denotes support of τ . µs denotes the posterior induced by s which is a generic element of S,
and µi denotes the ith entry of µ “ supp pτq. So we use µi to refer a specific entry of µ and µs to generic
posteriors receiver forms upon observing a generic signal s P S.

8The notation Eω„µs
is used to denote the expectation over the random variable ω taken with respect to

the measure µs. When the random variable is clear, we will just use the measure that gives the probability
distribution on the subscript.

9The literature on Bayesian persuasion generally focuses on sender-preferred equilibrium for existence.
Lipnowski and Ravid (2020) studies the robustness of this assumption.
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An optimal signaling strategy π˚ for sender is then defined by argmaxπPΠ USpπq and has

value u˚ “ maxπPΠ USpπq.

Similar to Lemma 1 in Kamenica and Gentzkow (2011) we can transform the problem of

choosing π P Π to choosing τ P ∆p∆pΩqq such that |supp pτq| ď k. This is the belief based

approach where sender’s signaling strategy and receiver’s equilibrium beliefs are replaced

with the ex-ante distribution over the posterior beliefs.Throughout the paper, τ will be

called an information structure (induced by the signaling strategy π).

Formulating the sender’s problem as a search for an optimal information structure τ

rather than a search for signaling strategy tπp.|ωquωPΩ makes the problem more tractable.

In section 3.3 we will show that, in fact, using this approach reduces the candidate optimal

information structures to a finite set.

The sender’s utility when the posterior µs is induced will be denoted as ûSpµsq “

Eω„µsu
Spâpµsq, ωq and the receiver’s utility with posterior belief µs is ûRpµsq defined in

the same way. Expected utility under the information structure τ is denoted by Eµs„τ û
Spµsq

and Eµs„τ û
Rpµsq for the sender and receiver respectively.

For a distribution of posteriors to be feasibly induced in the persuasion game with shared

priors, we need the expected value of the posterior beliefs to be equal to the prior belief.

This is also called the Bayes plausibility constraint (Kamenica and Gentzkow 2011), which

we can state formally by Eµs„τµs “
ř

µsPsupp pτq
µsτpµsq “ µ0 alongside with the cardinality

constraint supp pτq ď k due to coarse communication. Formally, we can state the following:

Lemma 1. There exists a signal with value u˚ if and only if there exists a Bayes plausible

distribution of posteriors τ such that Eτ û
Spµq “ u˚ and |supp pτq| ď k. If k ě mintm,nu,

this is true for any Bayes plausible τ P ∆p∆pΩqq such that Eτ û
Spµq “ u˚ .

This statement is identical to Lemma 1 in Kamenica and Gentzkow (2011) when k ě

mintm,nu. When k ď mintm,nu, given a signaling policy π, we can derive the equivalent

distribution of posteriors τpµsq for any µs by Bayes’ rule. This imposes
ř

sPS τpµsqµs “ µ0.

From a given an information structure τ such that Eτ û
Spµq “ u˚ and |supp pτq| ď k we can

always find the associated signals by writing πps|ωq “
µspωqτpµsq

µ0pωq
for each µs P supp pτq.

Using 1 we can describe sender’s problem as the following constrained optimization prob-

lem:

max
τP∆p∆pΩqq

Eµs„τ û
S

pµsq subject to |supp pτq| ď k and Eτ pµsq “ µ0. (1)

Throughout the paper, our focus will be on games where there are some gains to sending
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information i.e. there is some τ such that Eτ pûSq ě ûSpµ0q.
10 We first show that sender’s

problem (1) has a solution.

Proposition 1. An optimal information structure τ which solves the optimization problem

described in (1) exists.

Existence follows from extending the existence proof of Kamenica and Gentzkow (2011).

They who show that ûS is upper semi-continuous and attains a maximum over all Bayes

plausible information structures. We how that set of Bayes plausible information structures

whose support has cardinality at most k is a closed subset of all Bayes plausible information

structures in the relevant topological space. This provides compactness of the domain the

objective is considered. We add on this result about existence, in section 2.2 by providing

a finite algorithm that describes how to find a sender optimal information structure in any

finite Bayesian persuasion game.

3.1 Achievable Utilities and k-Concavification

A key contribution of Kamenica and Gentzkow (2011) is the characterization of the set of

attainable payoffs by the sender. This set is particularly useful to describe the best-case

payoffs in a strategic communication setting. Existing literature studies similar descriptions

of highest attainable payoffs for the sender in various models of strategic communication

(Lipnowski and Ravid 2020; Aumann and Hart 2003; Aybas and Callander 2022).

In this paper, we add onto these results by providing a method to geometrically char-

acterize the highest achievable sender payoffs for each prior µ0 and cardinality of the signal

space k. Our characterization directly parallels the geometric characterization provided

Kamenica and Gentzkow (2011) with concavification. We call our characterization as the

k-concavification of sender utility.

Let CHpûSq denote the convex hull of the graph of ûS.11 Without restrictions on the

set of available signals, the point pµ0, zq P CHpûSq represents a prior µ0 and sender payoff

z achievable by an information structure for prior µ0.
12 This is the foundation of the con-

cavification technique, first used in repeated games (Aumann and Maschler 1995) and then

applied to Bayesian persuasion (Kamenica and Gentzkow 2011).

10Throughout the paper, our focus will be on games where there are some gains to sending information:
the other case is trivial and the sender always prefers sending no information.

11Formally, CHp¨q : Rn Ñ Rn is an operator taking a function whose graph can be represented in Rn, and
returning the convex hull of the graph of the function in Rn i.e. f ÞÑ copgraphpfqq.

12Since ûS : ∆pΩq Ñ R, we can represent any belief µ with |Ω| ´ 1 “ n ´ 1 dimensions, and ûSpµq with a
real number, so pµ, zq P Rn.
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For any pµ0, zq P CHpûSq, Caratheodory’s Theorem assures the existence of a τ such that

µ0 P copsupp pτqq and |supp pτq| ď n ` 1, where co denotes the convex hull operator. Note

that the last condition possibly requires n posteriors in the support of τ to attain payoff

z. With restricted communication, the point pµ, zq P CHpûSq might not be feasible. In

this scenario, the construction of pµ, zq could require a convex combination of more than k

points from the graph of ûS. That is, any information structure giving payoff z could only

be constructed using strictly more than k signals.

In the constrained communication case, a prior belief-utility pair pµ, zq is feasible if it

can be contained in the convex hull of k or fewer points from the graph of ûS. We formalize

this by extending the definition of a convex hull.

The convex hull of a set Λ is the set of all points that can be represented by convex

combination of points in Λ. We denote this by copΛq. As a generalization, we define the

k-convex hull. Given a set Λ Ď Rn and an integer 0 ă k, the k-convex hull of Λ is the the set

of points that can be represented as the convex combination of at most k points in Λ. We

denote this by cokpΛq. Note that whenever n ě k, cokpΛq coincides with copΛq and whenever

k ă n it is a subset of copΛq. Below we provide a formal definition of k-convex hull.

Definition 1. Let Λ P Rn and n, k P N. We have that, x P cokpΛq of and only if there

exists a set of at most k points tλ1, . . . , λku Ď Λ and a set of corresponding convex weights

tγ1, . . . , γku such that
ř

iďk γi “ 1 and @i, 1 ą γi ą 0 such that a “
ř

iďk γiai. Equivalently,

we can write:

cokpAq “ ta P Rn : DB Ď A, s.t. a P copBq with |B| ď ku.

Using this definition, we denote the k-convex hull of the graph of ûS as CHkpûSq. Note

that if pµ0, zq P CHkpûSq, there exists an information structure τ with supp pτq ď k and the

Eτ pûSq “ z.

In order to state the set of attainable payoffs, we define V pµ0q “ suptz|pµ0, zq P CHkpûSqu.

V pµ0q is the largest payoff the sender can achieve when the prior is µ0. By construction,

if V pµ0q “ z, then we have k beliefs such that
ř

iďk τpµiqµi “ µ0 for some set of weights

tτpµ1q, . . . , τpµkqu and
ř

iďk τpµiqû
Spµiq “ z. This gives us the following equivalence between

k-concavification and our previous result on the optimal information structures.

Proposition 2. Let τ be an optimal information structure that solves the sender’s maxi-

mization problem described in (1). Then V pµ0q “ Eτ û
S.

Similar to concavification approach, k-concavification can be used to identify the optimal
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information structure when plotted. Moreover, the direct relationship between their charac-

terization and ours suggests a wider scope for the concavification technique. Our results can

be used to extend current concavification-based results relying on rich signals and generalize

them to arbitrary signal spaces. This highlights the full power of the concavification tech-

nique. We show this by an example in the last section of the paper, by applying our results

to extend Lipnowski and Ravid (2020).

Finally, this method is a useful tool to analyze and compare the possible gains from

persuasive communication under different priors and different degrees of coarseness in com-

munication. By comparing the k´concavification of the sender utility for different values of

k one can characterize the value of additional signals for any prior belief.

3.2 The Marginal Value of a Signal

So far, our analysis focused on how limited availability of signals affects communication. In

this section, we turn to the question on how it compares to unlimited communication.

Our particular focus is on analyzing how much the sender would be willing to pay for an

additional signal. This value is of particular importance, especially when we consider cases

where generating additional signals or having additional outcomes in an experiment is costly.

In such examples, this value informs the problem of the sender and determines the number

of signals or outcomes that are used in the equilibrium.

As expected, the sender attains the highest utility in a signal-rich setting. Additional

signals always weakly improve the payoff for the Sender. We use the unlimited signal payoff

for the sender to provide a lower bound on the optimal utility in the coarse communication

setting. This result relies on structural relationship between higher and lower dimensional

optimal information structures.

Let V ˚pk, µ0q be the value function of the sender with prior µ0 when the signal space

S is restricted to have k elements. Then, we can define the marginal value of a signal as

V ˚pk ` 1, µ0q ´V ˚pk, µ0q. This value represents what the sender would be willing to pay for

access to an additional signal

By Caratheodory theorem, whenever k ě mint|Ω|, |A|u, the marginal value of a signal

will be zero. Hence, additional signals are only valuable in coarse environments.

The sender’s willingness to pay for an additional signal is measured in terms of this gap

V ˚pk ` 1, µ0q ´ V ˚pk, µ0q. This gap depends on the preferences, and the common prior µ0.

Sender cannot induce all combinations of k-actions in coarse communication, as some

might fail Bayes plausibility. This restriction is critical for the value of an additional signal.
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If maintaining Bayes plausibility with lower dimensional signals requires inducing a posterior

located in a low-payoff yielding portion of an action region, then the sender will be willing

to pay more for more precise communication.

We establish an upper bound on the marginal value of a signal. This can be equivalently

stated as a lower bound on the utility achievable with k´1 signals. Our result applies to any

finite game of Bayesian persuasion. The inequality can be recursively applied to get bounds

on the value of attainable payoffs with any number of signals.

Proposition 3. Suppose |S| “ k ě 2, and the sender utility function uS is positive every-

where.13 Then it holds that

V ˚
pk, µ0q ´ V ˚

pk ´ 1, µ0q ď
2

k
V ˚

pk, µ0q.

Equivalently, we can state:

k ´ 2

k
V ˚

pk, µ0q ď V ˚
pk ´ 1, µ0q ď V ˚

pk, µ0q.

The 2{k factor on the upper bound implies that in persuasion games with large state

and action spaces, the marginal value of a signal cannot be too high as we approach rich

communication. However, the result does not necessarily imply monotonicity, as we will see

through our analysis in the next section.

The proof relies on creating alternative k ´ 1 signal information structures from the

k-optimal information structure τ˚
k and comparing them to the k ´ 1-optimal information

structure τ˚
k´1. We observe that τ˚

k can be ‘collapsed’ to get an information structure with k´

1 signals. By optimality of τ˚
k´1 new information structures must provide weakly less utility

compared to τ˚
k´1. We can construct k different k´1 dimensional information structures using

this method by combining the posteriors that are in the support of τ˚
k pairwise and leaving

the rest of the posteriors the same as τ˚
k . The utilities provided by these new information

structures are related to V ˚pk, µ0q, because they contain k ´ 2 posteriors which are also in

the support of τ˚
k .

We can use proposition 3 to provide an upper and lower bound on the payoffs attainable

using k signals as a function of the payoff attainable with full communication and binary

communication (the smallest non-trivial case where information transmission happens).

13This is without loss of generality. In the case where uS can be negative, the utility function can be
translated to achieve a minimum of zero, or we can simply change the statement by adding a constant
proportional to the minimum of sender utility.
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Corollary 1. Define V pq, µ0q “
pq´1qq

pq`1qpq`2q
V ˚pk, µ0q and V pq, µ0q “

qpq´1q

2
V p2, µ0q. Then, it

holds that V pq, µ0q ě V pq, µ0q for every q ą 2 and V pq, µ0q ě V pq, µ0q for every q ă k.

3.3 Properties of Optimal Information Structures

An important behavioral critique for Bayesian persuasion is the difficulty (for the sender) of

finding optimal information structures and the calculation of the concave envelope of sender

utility. Lipnowski and Mathevet (2017) makes the first effort of simplifying this search to a

finite problem in settings with rich signal spaces. The implementation of optimal information

structures rely on the sender’s ability to compute the concavification of their utility function,

or derive qualitative properties of it, which is a difficult computational task (Tardella 2008).

Access to limited signals makes the problem for searching information structures more

difficult (Dughmi et al. 2016). In this section, we determine the qualitative properties of

optimal information structures with coarse communication. We will also show that the

search for the optimal information structures can be finalized after searching over a finite

set. We follow a the technique of using the underlying preference structure of the receiver

to partition the space of posterior beliefs.

Formally, we can define subsets of ∆pΩq where the receiver’s action is constant, and use

the fact that sender utility is convex within these subsets.14

Definition 2. The set Ra Ď ∆pΩq is the set of beliefs where the action a is receiver-optimal

Ra “ tµi P ∆pΩq : a P Âpµiqu. R “ tRauaPA is the collection consisting of these sets for

every action a P A.15

In order to characterize the conditions for optimality we use well known properties estab-

lished in the literature. Lemmas 2 and 3 have been applied in (i) the context of persuasion

games where the receiver has psychological preferences over different posterior beliefs (Vol-

und 2018) and (ii) general games of persuasion to simplify the search for optimal information

structures (Lipnowski and Mathevet 2018).

Lemma 2. For every action a P A, the set Ra is closed and convex.

Lemma 3. The sender’s utility ûS is convex when restricted to each set Ra.

14In the appendix, we also establish that expected sender utility is a continuous and piecewise affine
function in the interior of these sets.

15R is a finite cover of ∆pΩq.
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Lemma 2 follows from the fact that each Ra can be written as the intersection of finitely

many closed half spaces. The proof of Lemma 3 uses the definition of ûS, which is a function

of sender-optimal actions at every belief. For any two beliefs µ1, µ2 in a given Ra, let the

sender-optimal action be âpµq at their convex combination µ. This action must be among

the set of receiver-optimal actions for the two original beliefs. Since the action âpµq is defined

as the action that maximizes sender utility among the set of receiver-optimal actions Âpµq,

and we have âpµq P Âpµ1q and âpµq P Âpµ2q, convexity of ûS follows.

Using Lemma 2 and 3, we can restrict our search to information structures inducing

affinely independent posteriors. Lipnowski and Mathevet (2017) shows that in the canonical

full communication Bayes persuasion model the optimal information structures are affinely

independent. They use extreme point theorems of Krein-Millman and Caratheodory to

argue the existence of an information structure with affinely independent support. Our proof

generalizes their result to arbitrary signal spaces. Moreover, the proof provides a systematic

way to modify any given information structure by dropping beliefs to reach an affinely

independent set and improve payoffs simultaneously, while maintaining Bayes plausibility.

Lemma 4. Let τ be a distribution of posteriors satisfying Bayes plausibility. Suppose that

supp pτq is not affinely independent. Then, there must exist a Bayes plausible τ 1 ‰ τ such

that supp pτ 1q is affinely independent and Eτ 1ûS ě Eτ û
S.

Intuitively, inducing affinely dependent beliefs is not a good use of the signals by the

sender - even if there is no cost associated with using more signals. For an affinely dependent

set of posteriors, some signals are ‘redundant’ and the resulting beliefs can be represented as

affine combinations of each other. The sender can always drop one of them and still maintain

Bayes plausibility and our proof outlines which posteriors to drop.

An immediate corollary of this result is that given an optimal information structure µ “

tµ1, . . . , µku that is affinely independent, the probability distribution τ that ensures Bayes

plausibility is uniquely determined through Choquet Theorem.16 The unique probability

distribution can in fact be calculated through a series of matrix operations.

We show that an information structure can always be weakly improved by changing it in

a way that maintains Bayes plausibility, and moving as many posteriors as possible to the

most extreme beliefs inducing an action. We measure the extremeness of a belief using the

following definition from convex analysis:

16See the appendix for a statement of this well known result in affine geometry.
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Definition 3. A point in an arbitrary convex set Λ is q-extreme if it lies in the interior of

a q-dimensional convex set within the set, but not a q+1-dimensional convex set within Λ.

In our setting, we will call q-extreme points of action regions q-extreme beliefs. Intuitively,

a q-extreme belief can be represented as a convex combination of pq ´ 1q´extreme beliefs.

Whenever we compare a q-extreme belief and a q1-extreme belief with q ă q1, we call q-

extreme belief less extreme. Critically, less extreme beliefs can be described of as averages

of more extreme beliefs, but not vice versa. A 0-extreme belief is therefore the most extreme

belief and cannot be represented as the average of any other belief in a given action region.

For a belief in the interior of the simplex and in a given an action region Ra, and integers

q ă r, the receiver is indifferent between more of their actions at q´extreme beliefs of Ra,

compared to r´extreme beliefs of Ra. And for a belief on the boundary of the simplex ∆pΩq,

the receiver’s posterior gives 0 probability to more states at q´extreme beliefs, compared to

r´extreme beliefs.

Thus intuitively, more extreme beliefs correspond to either more precise posteriors, or

posteriors where the receiver is indifferent between more actions. The next lemma shows

that these properties can be used to simplify the search for optimal information structures,

by starting from 0-extreme beliefs of action regions.

Lemma 5. Let τ be an information structure, and supp pτq “ pµ1, µ2, . . . , µkq has fewer than

pk´1q posteriors that are 0-extreme beliefs of some action regions tRauaPA. Then, there must

exist a Bayes plausible τ 1 ‰ τ that weakly improves sender utility, such that Eτ 1ûS ě Eτ û
S.17

When k “ n, we are back to the unrestricted communication, our result simplifies to

sender inducing n many 0-extreme points (also called outer points). This special case is

studied and proven by Lipnowski and Mathevet (2017).

In the proof of this Lemma, we show that given an information structure with at least two

beliefs that are not 0-extreme, one can always find a direction to move these two posteriors

towards more extreme beliefs, without affecting the probabilities of the other induced beliefs

and maintaining Bayes plausibility. Sender either prefers moving posterior beliefs in this

direction or the opposite direction by the linearity of expected utility in probabilities.

This result allows us to reduce the size of our search space considerably from an infinite

set (the set of k-dimensional Bayes plausible information structures) to a search over a finite

set, and explicitly characterize the sender-optimal information structure in any Bayesian

persuasion game using a finite algorithm, under the following assumption that rules out

17We also show in the appendix that the remaining belief is at most pn ´ kq extreme.

21



certain preference structures with ‘redundant’ states of the world which are irrelevant for

the agents’ utilities.

Assumption 1. Receiver preferences over the simplex are such that the intersection of the

affine spans of any two action regions are nonempty: affpRpq X affpRqq ‰ H, @p, q P A.

This assumption does not lead to any loss in generality and is only about the representa-

tion of the preference structure. It is satisfied when the (non-relative) interiors of the action

regions tRauaPA Ď ∆pΩq are non-empty. It is violated in the case when there are multiple

states which are payoff irrelevant for the receiver under different actions, so that the affine

spans of some action regions do not intersect.

In settings where assumption 1 is violated, the persuasion game can be reduced to a

simpler representation that satisfies it. Similarly, when assumption 1 is satisfied, preferences

and the state space can be reformulated in a way that violates assumption 1. To see this,

consider a persuasion game that satisfies assumption 1 with the state space Ω “ tθ1, θ2, θ3u.

We can add artificial ‘copies’ of the states to Ω and transform it to Ω “ tθ1, θ
1
1, θ2, θ

1
2, θ3, θ

1
3u,

update the preferences so that the players are indifferent between tθi, θ
1
iu and split their

prior belief between the copies of the states. However, these extra states only increase the

dimensionality of the state space without any substantive difference in preferences, and the

game has a simpler representation in a lower dimensional space which combines each tθi, θ
1
iu

to a single state. Assumption 1 states that the game is already in this simplest possible

representation.

Corollary 2. The sender’s optimization problem described in (1) can be solved by checking

finitely many candidate information structures.

The proof of the statement gives the explicit finite procedure to find an optimal informa-

tion structure. It is straightforward to see that there are only finitely many ways to choose

pk ´ 1q posteriors on 0-extreme beliefs of action regions tRauaPA. Fixing pk ´ 1q posteriors,

the kth posterior must lie on an affine subspace characterized by µ0 and the first pk ´ 1q

posteriors, in order to ensure Bayes plausibility. Searching for the kth posterior in this affine

subspace would still be a search over an infinite set over which the sender utility function is

not guaranteed to be continuous and well-behaved. Using Lemma 3, we can show that it is

without any loss to restrict the search for the optimal kth posterior to the intersection of this

affine subspace and the extreme beliefs of tRauaPA. The posteriors in this affine subspace

correspond to q-extreme points of tRauaPA for q ď pn ´ kq.
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An alternative approach of finding an optimal information structure based on Bergemann

and Morris (2019) could be solving multiple linear programs (one for each k-combination of

the actions) and then comparing the results. Our procedure simply checks finitely many

candidate information structures (that can be enumerated by listing combinations of 0-

extreme points into sets of size (k-1), and the corresponding q-extreme point), and leverages

the insights we have developed in the paper to reduce the size of the search space, compared

to solving
`

M
k

˘

linear programs.

4 Applications and Extensions

4.1 Threshold Games

In this section, we focus on a class of games where the sender’s utility only depends on the

action and not on the state, and the receiver’s default action under the prior is the least

preferred action for the sender.Examples involving these kinds of preferences have received

interest in previous work: e.g. buyer-seller interactions where the seller is trying to convince

the buyer to purchase any one of multiple different products, and the buyer’s default action

is buying nothing (Chakraborty and Harbaugh 2010), or a think tank designing a study to

persuade a politician to enact one of many possible policy reforms, where the default action

is a continuation of status quo (Lipnowski and Ravid 2020).

Our parametric example captures settings where there are belief ‘thresholds’ above which

the receiver finds it optimal to take a different action, and the default action is doing noth-

ing. Similar preferences are studied by Sobel (2020) to analyze the conditions under which

deception in communication will lead to loss in welfare.

We study the case with 3 states of the world to be able to visually demonstrate how the

marginal value of a signal can depend on the location of the prior, and the threshold values-

or equivalently, the difficulty of inducing desirable actions for the sender.

Let Ω “ tω1, ω2, ω3u. There are four actions available to the receiver A “ ta0, a1, a2, a3u.

We consider a Bayesian persuasion game where the sender has an optimal action for each

state and a default safe action. This can be represented with receiver preferences of the form:

uR
pa, ωiq “

$

’

’

’

&

’

’

’

%

0 if a “ a0

1´T
T

if a “ ai @i P t1, 2, 3u

´1 if a ‰ ai @i P t1, 2, 3u
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These preferences can be used to model situations in which for each state ωi action ai is

optimal, and mismatching the state i.e. taking action aj j ‰ 0 andj ‰ i is costly, with cost

normalized to unity. Finally, a0 is the safe action. Such receiver preferences lead to action

thresholds over the simplex of posterior beliefs.

Let us denote µspωiq by µi
s, where µi

s is the ith coordinate of a given posterior belief µs.

One can think of µspωq as the probability distribution over Ω induced by µs. For each state,

there is a corresponding preferred action ai which is taken by the receiver if and only if the

receiver believes the state of the world is ωi with at least probability T . Specifically, the

receiver prefers action ai P ta1, a2, a3u if and only if the posterior belief µs P ∆pΩq such that

µi
s ě T , and prefers a0 otherwise. Hence, we can say that for i P t1, 2, 3u, j P t0, 1, 2, 3u and

j ‰ i we have that EµsruRpai, ωqs ě EµsruRpaj, ωqs if and only if µi
s ą T . The action zones

for these receiver preferences can be represented as:

Ri “ tµs P ∆pωq|µi
s ě T u

Sender preferences are such that @ω P Ω, uspa0, ωq “ 0 and uspai, ωq “ 1. Thus, the

sender only cares about actions and not the states, and wants to induce one of the non-

default actions. The parameter T can be interpreted as the difficulty of inducing the desirable

actions for the sender - since the posteriors need to be above T to induce any desirable action

for the sender.

Given this structure, it is immediately clear that sender can attain a payoff of 1 by using

3-signal information structures, as drawn in Figure 6. Every point inside simplex can be

represented as the convex combination of the extreme points of the simplex, hence achieving

the maximal utility with 3 signals is possible for every interior prior.

With a 1-signal information structure, we see that the sender’s payoff is immediately

determined by the prior belief. If no information is transmitted, the receiver will take

whatever action is optimal under the prior belief, which will yield a 0 payoff to the sender

unless the prior is located in one R1, R2 or R3.

We proceed by analyzing the non-trivial case of 2 signals. We focus on priors µ0 that

are in R0, as for priors in Ri for i P t1, 2, 3u the maximal payoff can be obtained with no

information transmission at all. We use ∆c to denote the set of beliefs where two-signal

information structures attain lower payoff than three-signal information structures. The

following Lemma characterizes the values of T such that this set is non-empty.
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Lemma 6. ∆c ‰ H if and only if T ě 2
3
.

Figure 6: On the left, we have the action threshold T “ 2
3 so it is possible to maintain Bayes plausibility

without inducing action 0 for any prior. On the right, T ą 2
3 , so for the prior beliefs in the blue shaded

region, the sender has to mix a0 and another action when constrained to 2 signals. The blue shaded region
in the right figure corresponds to ∆c.

For thresholds T ď 2
3
, two-dimensional information structures suffice for achieving maxi-

mal utility. We restrict attention to cases where T ą 2
3
. In this regime, we can state that for

any prior in ∆c, the utility attained by two-signal information structures is must lie between

two values, determined by T .

Lemma 7. If T ą 2
3
, whenever µ0 P ∆c, we have that 1

3T
ă V p2, µ0q ă 2T´1

T
ă V p3, µ0q “ 1.

When µ0 R ∆c we have that V p2, µ0q “ V p3, µ0q “ 1.

Corollary 3. Depending on the location of the prior inside ∆c the marginal value of a signal

can be a function with increasing or decreasing differences. That is 1
3T

ą 1
2
and 2T´1

T
ă 1

2
.

The priors for which the marginal value of a signal is increasing are the ones that are

the furthest away from the desirable action regions. For the sender who only has access to

two signals, the only way to induce favorable actions with these priors is by also inducing

the default action with high probability, getting an expected utility below 0.5. Therefore,

the value of the second signal is also below 0.5. Getting access to the third signal allows

the sender to maintain Bayes plausibility by not inducing the default action, guaranteeing a

payoff of 1. Hence, the value of the third signal is higher than 0.5.

On the other hand, for some priors, the marginal value of an additional signal is a

decreasing function. These are prior beliefs that are already close to one of the action
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regions. Intuitively, if the receiver is already leaning towards taking one action, it is easy to

induce that action with a high probability, getting an expected payoff above 0.5. The value

of the second signal is then higher than the value of the third signal. Note that additional

signals always weakly increase the sender utility, because the feasible set in the optimization

problem is expanding.

4.2 Cheap Talk with Transperant Motives

Lipnowski and Ravid (2020) study an abstract cheap-talk model in a recent paper. In this

setting, there are two players: A sender and a receiver. The game proceeds identically to

the persuasion game we describe, except for the fact that the signal s P S is chosen after

the sender observes the state ω P Ω.18 Receiver, upon observing s P S decides which action

a to take from set A. It is assumed that both players’ utility functions are continuous, but

only receiver’s utility depends on the state i.e. uR : Ω ˆ A Ñ R. Critically, the sender’s

utility is independent of the state but only depends on the action taken i.e. uS : A Ñ R, and
hence the games are called Cheap Talk with Transparent Motives. To contribute to existing

results, we will impose |S| ď k to study implications of our theory in this environment.

Throughout this section we will focus on the Perfect Bayesian Equilibria - hereinafter

succinctly referred as the equilibrium- Epπ, ρ, βq of this cheap talk game. Formally, the

equilibrium is defined by three measurable maps: a signaling strategy for the sender π : Ω Ñ

∆pSq; a receiver strategy ρ : S Ñ ∆A ; and a belief system for the receiver β : S Ñ ∆Ω;

such that:

1. β is obtained from µ0, given π, using Bayes’s rule;

2. ρpsq is supported on argmaxaPA

ş

Ω
uRpa, ¨qdβp¨ | sq for all s P S; and

3. πpωq is supported on argmaxsPS

ş

A
uSp¨qdρp¨ | sq for all ω P Ω.

Lipnowski and Ravid (2020) approach this problem using the belief based approach, sim-

ilar to the Bayesian persuasion framework we described in the earlier sections. Hence, we can

again focus on the ex-ante distributions over the receiver’s posterior beliefs i.e. information

structures τ P ∆p∆pΩq).

As we have discussed in our model, every belief system and sender strategy leads to an

ex-ante distribution over receiver’s posteriors, and by Bayes Rule these posteriors should

18Each of Ω, A and S are assumed to be compact metrizable spaces containing at least two elements.
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be equal to the prior on average. Hence, the set of Bayes plausible information structures

can be identified by every equilibrium sender strategy which leads to a posterior belief

that is an element of Ipµ0q “ tτ P ∆p∆pΩqq|
ş

µdτpµq “ µ0u. However, if the sender is

constrained to sending only k signals it can only induce an ex-ante distribution over receiver’s

posterior with k elements in the its support and this is the only restriction imposed by

access to limited number of signals . This set of possible ex-ante distributions is identified

by Ikpµ0q “ tτ P ∆p∆pΩqq|
ş

µdτpµq “ µ0 and | supppτq| ď ku. This set Ikpµ0q is identical to

the set we maximized over in the problem of Bayes persuasion with coarse communication.

Using the sender’s possible continuation values from the receiver having µ as his posterior

- described by the correspondence V pµq : couS
`

argmaxaPA

ş

uRpa, ¨qdµ
˘

- Aumann and

Hart (2003) and Lipnowski and Ravid (2020) show that an outcome pτ, zq is an equilibrium

outcome if and only if it holds that (i) τ P I pµ0q, and (ii) z P
Ş

µPsupppτq
V pµq.

Building on their insight, we can show that this result directly extends to the coarse

communication environment. Formally, when the receiver is constrained to sending k-signal

i.e |S| ď k we can characterize equilibrium outcomes as follows.

Lemma 8. Let pτ, zq be an outcome pair describing a distribution over posterior beliefs

τ , and a utility level z. pτ, zq is an equilibrium outcome if and only if: τ P Ik pµ0q and

z P
Ş

µPsupppτq
V pµq.

Essentially, the first condition - τ P Ik pµ0q - follows from the equivalence between

Bayesian updating and Bayes plausible information structures. Limiting the available signals

limit the set of inducable posteriors with a one-to-one relationship, hence replacing τ P Ipµ0q

with τ P Ik pµ0q suffices. The second condition - z P
Ş

µPsupppτq
V pµq - is a combination of

sender and receiver incentive compatibility constraints.

Lipnowski and Ravid (2020) also provide a novel way of using non-equilibrium information

structures to infer possible equilibrium payoffs of the sender. Formally, they say that an

information structure τ P Ipµ0q secures z if and only if Pµ„τ pV pµq ě zq “ 1. Using this

definition they show that an equilibrium inducing sender payoff z exists if and only if z is

securable.

With rich signal spaces, the sender can choose an information structure from τ P Ipµ0q

to secure a payoff. The only difference with coarse communication is that the sender is

restricted use an information structure τ from Ikpµ0q. Hence, we say that an information

structure τ P Ikpµ0q k-secures z if and only if Pµ„τ pV pµq ě zq “ 1. Following the exact

arguments in Lipnowski and Ravid (2020), when |S| ď k an equilibrium inducing sender

payoff z exists if and only if z is k-securable.
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Using this equilibrium characterization via k-securablity, we can state that a sender-

preferred equilibrium exists and the payoff of the sender in this equilibrium can be character-

ized by v˚
kp¨q :“ maxτPIkp¨q inf vpsupp τq. In this setting, the sender is maximizing the highest

payoff value it can secure across all k-dimensional information policies, as inf vpsupp τq cor-

responds to the highest value which the information structure τ k-secures. By comparison,

with unlimited signals this value is characterized by v˚p¨q :“ maxτPIp¨q inf vpsupp τq. Lip-

nowski and Ravid (2020) show that v˚p¨q corresponds to the the quasiconcave envelope of

sender’s value function vpµq “ maxV pµq. This means that it is the the pointwise lowest

quasi-concave and upper semi-continuous function that majorizes v.

In order to showcase how to apply our methods in their context, we provide an intu-

itive connection between constructing lower dimensional optimal information structures and

optimal linear compressions of the state space. Formally, we first define Tk be the set of

all k-dimensional flats that contain the prior µ0.
19 Formally, we show the original coarse

strategic communication problem for the sender is equivalent to an alternative formulation

in which sender first picks an optimal k-dimensional compression Tk of the state space, and

then solves a full-dimensional problem in Rk with k signals. One can then reinterpret this

k-dimensional summary as the optimal way for sender to compress the higher dimensional

state space into k new states that are mixture of the former n states. Using this observation

we can restate the payoff the sender in the sender-preferred equilibrium with the following

proposition:

Proposition 4. In the setting of Lipnowski and Ravid (2020) with a coarse signal space

|S| “ k, a sender preferred equilibrium exists. Defining all Bayes plausible information

structures within a new compressed space Tk by ITk
pµ0q “ tτ P ∆p∆pTkqq|

ş

µdτpµq “ µ0u,

the sender’s utility with the optimal information structure can be characterized by:

v˚
k “ max

TkPIpµ0q

ˆ

max
τPITk pµ0q

ˆ

min
µPsupp τ

Eω„µu
S

pµq

˙˙

.

Proposition 4 shows quasi-concavification can be used on lower-dimensional linear com-

pressions of the state space, which is equivalent to the solution of the cheap talk game

with coarse communication. This is to say that, given sender’s optimal choice of optimal k-

compression Tk, the solution to the sender’s problem is identical to solving an unconstrained

19A k-dimensional flat in Rn is defined as a subset of a Rn that is itself homeomorphic to Rk. Essentially,
flats are affine subspaces of Euclidian spaces. A flat T belonging to the set Tk can be defined by linearly

independent vectors tµ̃1, . . . , µ̃ku P Rnˆk as T “

"

µ P Rn|µ “ µ0 `
řk

i“1 αiµ̃i

*

Ă Rn.
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problem over the the compressed state space Tk. Lipnowski and Ravid (2020) point out

that the difference between the quasi-concave envelope and the concave envelope at a fixed

prior can be interpreted as the value of commitment power for the sender. The methods

we develop in this paper can then be used to analyze the interaction between commitment

power and communication complexity, to compare the achievable utilities with and without

commitment, and with signal spaces of different size.

5 Conclusion

We set out to analyze the effect of coarse signal spaces in Bayesian persuasion, which was

left unexplored by previous literature.

We provide the tools to solve coarse persuasion games, and characterize the fundamental

properties of optimal information structures, proving results that apply to both signal-rich

and signal-poor environments. The tools we develop can be used to extend existing results in

the Bayesian persuasion literature to coarse communication settings. This extends the range

of interactions that Bayesian persuasion can be applied to, such as regulatory constraints on

experiment designs in drug trials, technological or legislative constraints on communication

complexity in settings such as targeted advertising, expert-layperson communication and

advice seeking.

We show that the sender prefers to induce the most extreme beliefs that are feasible. We

simplify the sender’s optimization problem and show that it can be solved by a finite proce-

dure, and describe achievable sender utilities using k-concavification. Through our example

in targeted advertising, we demonstrate that receivers might prefer coarse communication,

and fewer signals do not necessarily lead to less informative posteriors. Our model is therefore

a novel and useful theoretical framework in analyzing settings in which the communication

between parties can be limited by the receiver, or a regulator who cares about the aggregate

welfare.

With this general model, we then analyze the properties of the marginal value of a signal

for the sender. We prove a fundamental property of persuasion games with signal spaces of

different sizes, and show that the loss in utility due to a limited signal space can be bounded

below. Our lower bound result also implies that as a persuasion game approaches rich

communication, additional signals become marginally less valuable for the sender. However

in a finite setting the marginal value is not necessarily monotonically decreasing, as our

example demonstrates.
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We apply our framework to analyze how much a sender would be willing to pay for a

larger signal space, focusing on specific preference structures. The belief-threshold games

we study capture some of the most important questions studied in persuasion, such as firms

sending product information, or lobbyists commissioning studies to convince politicians. In

these threshold games, we show that precise communication is more valuable when desirable

actions are more difficult to induce for the sender.

The framework we develop opens many avenues for future research. As we show through

our extensions, our model is flexible enough to be applied to cheap talk settings and other

models of Bayesian persuasion. Our framework is a useful to analyze the interaction between

the value of commitment and the value of richer communication, and how these depend on

the level of disagreement between agents. We can study competition between senders who

have access to signal spaces with different degrees of complexity, or the problem of trying to

persuade a heterogeneous set of agents using public or private signals with different degrees

of coarseness. We leave these questions for future work.
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Appendices

A Additional Results

We begin by providing additional results that will be referenced in the proofs of the state-

ments in the main text.

Choquet Theorem for Simplices

Theorem (Choquet Theorem). Suppose that P is a metrizable compact convex subset of a

locally convex Hausdorff topological vector space, and that µ0 is an element of P . Then there

is a probability measure τ on P which represents µ0 i.e.
ř

pPP τppqp “ µ0 s.t. supp pτq “

ExtpP q, where ExtpP q denotes the extreme points of P . Furthermore, if ExtpP q is affinely

independent, this probability measure τ is unique.

Further Results on Properties of ûS and sender-preferred zones

Definition 4. Sa1

a Ă Ra denotes the region where the sender preferred action a1 is taken

in region Ra. Formally Sa1

a Ă Ra is defined as Sa1

a :“ tµ P ∆pΩq : µ P Ra and a1 P

Âpµq ûSpa1, µq ě ûSpã, µq @ã P Âpµqu.

Remark . Observe that by definition we have that @a, a1 P A we have that Sa1

a Ď Sa1

a1 .

Lemma 9. @a, a1 P A Sa1

a is closed and convex.

Proof. We can define

Sa1

a “

¨

˝Xa1‰a

#

µ P Ra :
ÿ

iă0ďΩ

µpωq
`

uS
pa, ωq ´ uS

pa1, ωq
˘

ě 0

+

a1PApµq

˛

‚,

which is intersection of finitely many half-spaces and closed, convex set Ra. ■

Lemma 10. @a, a1 P A, ûS is an affine function over Sa1

a .

Proof. For every posterior µ P ∆pΩq the receiver is indifferent between taking actions

a P Âpµq. For every µ P Sa1

a receiver takes action a1, by definition of sender preferred equi-

librium. Given a fixed action a1, ûSpa1q “ EµpuSpa, ωqq, which is affine over the simplex. ■
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Corollary 4. @a P A, ûS is a continuous function over intpRaq.

Remark . ûS has jump discontinuities only at µ P ∆pµq such that µ P Ra X Ra1 with Ra X

Ra1 “ BdpRaq X BdpRa1q.

Further properties of ûR and implications

Lemma 11. In finite persuasion games, receiver utility in equilibrium: maxaPA ûRpa, ωq is

convex over ∆pΩq. In fact, it is a polyhedral convex function.

Proof. Observe that maxaPA ûRpa, ωq “ maxaPA

"

tEµu
Rpa1, ωqua1PA

*

. Eµu
Rpa1, ωq denotes

the expected utility for a fixed action a1 P A, which is an affine function over ∆pΩq, and

therefore convex. Then we have that epigraph of maxaPA ûRpa, ωq is a polyhedral convex set.
20 ■

An immediate implication is the following.

Corollary 5. Let τ be the optimal information structure with k-signals and τ 1 be the optimal

information structure with with k ` 1 signals. If τ and τ 1 are Blackwell comparable we have

that receiver prefers τ 1 over τ .

The corollary follows from the definition of Blackwell comparability, and the fact that

the receiver preferences must be convex.

B Proofs of Statements in the Main Text

Proof of Proposition 2

Let τ be the optimal information structure solving the sender’s maximization problem,

and suppose for a contradiction, suptz|pµ0, zq P CHkpûSqu ‰ Eτ û
S.

For the first case, let suptz|pµ0, zq P CHkpûSqu ă Eτ û
S. However, taking the beliefs in

supp pτq “ tµ1, . . . , µku, we know that by the feasibility of τ , Dtτpµ1q, . . . , τpµkqu P ∆p∆pΩqq

such that
ř

iďk τpµiqµi “ µ0 and
ř

iďk τpµiq “ 1, 1 ě τpµiq ě 0. Thus, by definition 1,

pµ0,Eτ û
Sq P CHkpûSq. Therefore, we cannot have suptz|pµ0, zq P CHkpûSqu ă Eτ û

S.

20f is a polyhedral convex function if and only if its epigraph is polyhedral, as defined in Rockafellar
(1970).
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For the other case, let suptz|pµ0, zq P CHkpûSqu ą Eτ û
S. Since pµ0, zq P CHkpûSq, take

the set of points tûSpµ1q, . . . , ûSpµkqu and convex weights tα1, . . . , αku with
ř

iďk αiµi “ µ0

and
ř

iďk αiû
Spµiq “ z, also satisfying

ř

iďk αi “ 1, 1 ě α ě 0. We know these points and

weights must exist by definition 1. Now observe that τ 1 “ tµ1, . . . , µku must be a feasible

solution to the sender’s maximization problem. We know that τ 1 satisfies Bayes plausibility

by the definition given with the weights αi. Therefore τ 1 could have been picked instead of

τ in the sender’s maximization problem, contradicting the optimality of τ .

Proof of Lemma 2

Given a P A Ra is the intersection of ∆pΩq, which is closed and convex, and finitely

many closed half spaces defined by tµ P R|Ω| :
ř

ωPΩ µpωqpupa, ωq ´ upa1, ωqq ě 0ua1PA. It is

therefore closed and convex.

Proof of Lemma 3

Follows directly from Volund (2018), Theorem 1 or Lipnowski and Mathevet (2017),

Theorem 1.

Proof of Lemma 4

Let supp pτq “ tµ1, . . . , µku be affinely dependent. Then, there must exist tλ1, . . . , λku such

that
ř

iďk λi “ 0 and
ř

iďk λiµi “ 0. Since τ is Bayes plausible, we have µ0 “
řk

i“1 τpµiqµi

for some τpµ1q, . . . , τpµkq, which satisfy
ř

i τpµiq “ 1, and @i, 1 ą τpµiq ą 0.

Now, from the set tλ1, . . . , λku, some elements must be positive and some negative. Among

the subset with negative weights, pick j˚ such that
τpµjq

λj
is maximized. Among the subset

with positive weights, pick p˚ such that τpµpq

λp
is minimized. Now, we can write

µj˚ “
ÿ

i‰j˚

´
λi

λj˚

µi, and µp˚ “
ÿ

i‰p˚

´
λi

λp˚

µi.

Now, rewriting the Bayes plausibility condition, we get:

τpµ1qµ1 ` ¨ ¨ ¨ ` τpµj˚q

˜

ÿ

i‰j˚

´
λi

λj˚

µi

¸

` ¨ ¨ ¨ ` τpµkqµk “ µ0
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ô
ÿ

i‰j˚

ˆ

τpµiq ´
τpµj˚qλi

λj˚

˙

µi “ µ0, and analagously,
ÿ

i‰p˚

ˆ

τpµiq ´
τpµp˚qλi

λp˚

˙

µi “ µ0.

Now, we will show that @i ‰ j˚,
´

τpµiq ´ λi
τpµjq

λj˚

¯

ě 0 and @i ‰ p˚,
´

τpµiq ´ λi
τpµkq

λp˚

¯

ě 0.

If λi “ 0, the inequalities hold trivially.

If λi ą 0, the inequalities are equivalent to τpµiq

λi
ě

τpµj˚ q

λj˚
and τpµiq

λi
ě

τpµp˚ q

λp˚
. In both cases,

the condition holds, because λj˚ is negative and λp˚ is chosen to minimize this ratio.

If λi ă 0, the inequalities are equivalent to τpµiq

λi
ď

τpµj˚ q

λj˚
and τpµiq

λi
ď

τpµp˚ q

λp˚
. In both cases,

the condition holds, because λj˚ is chosen to maximize this ratio and λp˚ is positive.

Moreover, note that
ř

i‰j˚

´

τpµiq ´ λi
τpµj˚ q

λj˚

¯

“ p1´τpµj˚qq`
τpµj˚ q

λj˚
λj˚ “ 1, and analogously

for p˚. Therefore, we can define τ 1 and τ 2 respectively from τ by dropping µj˚ or µp˚ , and we

maintain Bayes plausibility using convex weights
´

τpµiq ´ λi
τpµj˚ q

λj˚

¯

and
´

τpµiq ´ λi
τpµp˚ q

λp˚

¯

.

Now, writing Eτ 1ûS ´ Eτ û
S and Eτ2ûS ´ Eτ û

S, we get:

Eτ 1ûS
´ Eτ û

S
“

ÿ

i‰j˚

ˆ

τpµiq ´ λi
τpµj˚q

λj˚

˙

ûS
pµiq ´

ÿ

iďk

τpµiqû
S

pµiq

Eτ2ûS
´ Eτ û

S
“

ÿ

i‰p˚

ˆ

τpµiq ´ λi
τpµp˚q

λp˚

˙

ûS
pµiq ´

ÿ

iďk

τpµiqû
S

pµiq

ô Eτ 1ûS
´ Eτ û

S
“

´τpµj˚q

λj˚

˜

ÿ

i‰j˚

λiû
S

pµiq

¸

´ τpµj˚qûS
pµj˚q

ô Eτ2ûS
´ Eτ û

S
“

´τpµp˚q

λp˚

˜

ÿ

i‰p˚

λiû
S

pµiq

¸

´ τpµp˚qûS
pµp˚q.

Suppose Eτ 1ûS ´ Eτ û
S ă 0 and Eτ2ûS ´ Eτ û

S ă 0. This implies:

´1

λj˚

˜

ÿ

i‰j˚

λiû
S

pµiq

¸

´ ûS
pµj˚q ă 0, and

´1

λp˚

˜

ÿ

i‰p˚

λiû
S

pµiq

¸

´ ûS
pµp˚q ă 0
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ô
1

λj˚

˜

ÿ

i‰j˚

λiû
S

pµiq

¸

` ûS
pµj˚q ą 0, and

1

λp˚

˜

ÿ

i‰p˚

λiû
S

pµiq

¸

` ûS
pµp˚q ą 0.

However, note that by assumption, λj˚ and λp˚ have opposite signs. Multiplying the first

inequality by λj˚ and the second inequality by λp˚ , we must have:

˜

ÿ

iďk

λiû
S

pµiq

¸

ă 0, and

˜

ÿ

iďk

λiû
S

pµiq

¸

ą 0.

Which is a contradiction. So Eτ 1ûS ´ Eτ û
S ă 0 and Eτ2ûS ´ Eτ û

S ă 0 cannot hold at the

same time, and either τ 1 or τ 2 must yield weakly higher expected utility for the sender.

Replace τ with the information structure that yields weakly higher utility using the process

defined above, which drops one belief that is affinely dependent. If the resulting information

structure is affinely independent, we’re done. If not, we can repeat the process described

above and we will either reach an affinely independent set of vectors before we get to two,

or we reach two vectors, which must be affinely independent. This completes the proof.

Proof of Lemma 5

Suppose µ “ tµ1, . . . , µku is an information structure, and without loss of generality, let

µ1, µ2 be posteriors that are not 0-extreme points of any action region Ra. Let µ1 P R1 and

µ2 P R2. Since they are not 0-extreme points, they are at least 1-extreme points. The proof

proceeds analogously if they are p´ extreme points for any p ą 0.

By Bayes plausibility, we know that
řk

i“1 τpµ1qµi “ µ0, for the given prior µ0. We can

rearrange the Bayes plausibility condition and write:

pτpµ1q ` τpµ2qq

ˆ

τpµ1qµ1 ` τpµ2qµ2

τpµ1q ` τpµ2q

˙

` p1 ´ τpµ1q ´ τpµ2qq

˜

řk
ią2 τpµiqµi

1 ´ τpµ1q ´ τpµ2q

¸

“ µ0.

Denoting τpµ1q ` τpµ2q “ τ̂12,
τpµ1q

τ̂12
“ τ̂1,

τpµ2q

τ̂12
“ τ̂2, and

τpµ1qµ1`τpµ2qµ2

τpµ1q`τpµ2q
“ µ̂12, we note

that we can replace µ1, µ2 with µ1
1, µ

1
2 and still maintain Bayes plausibility if the following
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condition is satisfied:

αµ1
1 ` p1 ´ αqµ1

2 “ µ̂12, for some α P p0, 1q.

The new information structure µ1 “ tµ1
1, µ

1
2, µ3 . . . , µku will be Bayes plausible with the

weights τ 1pµ1
1q “ ατ̂12, τ

1pµ1
2q “ p1´αqτ̂12, and τ 1pµiq “ τpµiq for i ą 2. Since we know µ1, µ2

are (at least) 1-extreme points, there exists line segments A1 Ă R1, A2 Ă R2 and µ1, µ2 are

in the relative interior of A1, A2 respectively.

Now, let us choose µ
2

1, µ
1
2 that satisfy the following condition:

2τ̂1 ´ 1

τ̂1 ´ τ̂2
µ1 `

2τ̂2 ´ 1

τ̂1 ´ τ̂2
µ2 “ µ

2

1 ´ µ1
2. (2)

With any µ
2

1, µ
1
2 that satisfies the above condition, we can calculate the corresponding

µ1
1, µ

2
2 such that:

τ̂1µ
1
1 ` τ̂2µ

2

1 “ µ1,

τ̂1µ
1
2 ` τ̂2µ

2

2 “ µ2.

Moreover, µ
1

1, µ
2

1, µ
1
2, µ

2

2 will satisfy:

µ̂12 “ τ̂1µ
1
1 ` τ̂2µ

1
2,

µ̂12 “ τ̂1µ
2

1 ` τ̂2µ
2

2.

There will be infinitely many possible pairs pµ
2

1, µ
1
2q that satisfy equation 2, but let us pick

an arbitrary pair that are within a sufficiently close radius of µ1, µ2. Since ûS is piecewise

affine and convex within every action region, let us choose a small enough radius so that

pµ
2

1, µ
1
1, µ1q are on the same affine piece in R1, and pµ

2

2, µ
1
2, µ2q are on the same affine piece

in R2. Since µ1, µ2 are 1-extreme points, hence relative interior points of the line segments

A1, A2, we can find such ϵ, δ. Denoting the directional derivative of ûS with ∇vû
S, the

piecewise affine nature of the sender utility function will imply the following:

tµ1
1, µ

2

1u Ă pA1 X Bϵpµ1qq Ă R1,

tµ1
2, µ

2

2u Ă pA2 X Bδpµ2qq Ă R2,

∇
pµ

2

1´µ1
1q
ûs

pµ1q “ ∇
pµ

2

1´µ1
1q
ûs

pµ1
1q “ ∇

pµ
2

1´µ1
1q
ûs

pµ
2

1q “ θ,
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∇
pµ

2

2´µ1
2q
ûs

pµ2q “ ∇
pµ

2

2´µ1
2q
ûs

pµ1
2q “ ∇

pµ
2

2´µ1
2q
ûs

pµ
2

2q “ γ,

where γ and θ are the directional derivatives of ûs in the directions pµ
2

2 ´ µ1
2q, pµ

2

1 ´ µ1
1q

respectively. Now, we define the two candidate information structures that will replace

µ “ tµ1, µ2, µ3 . . . , µku as follows:

µ1
“ tµ1

1, µ
1
2, µ3 . . . , µku,

µ2
“ tµ2

1, µ
2
2, µ3 . . . , µku.

Denote the part of the sender utility that is coming from the 0-extreme points tµ3, . . . , µku as

ū “
řk

ią2 τpµiqû
Spµiq. Now, by our initial assumption, µ is an optimal information structure,

so we must have:

τ̂1τ̂12û
S

pµ1
1q ` τ̂2τ̂12û

S
pµ1

2q ` ū ď τpµ1qû
S

pµ1q ` τpµ2qû
S

pµ2q ` ū,

τ̂1τ̂12û
S

pµ
2

1q ` τ̂2τ̂12û
S

pµ
2

2q ` ū ď τpµ1qûS
pµ1q ` τpµ2qû

S
pµ2q ` ū

ðñ

τ̂1û
S

pµ1
1q ` τ̂2û

S
pµ1

2q ď τ̂1û
S

pµ1q ` τ̂2û
S

pµ2q,

τ̂1û
S

pµ
2

1q ` τ̂2û
S

pµ
2

2q ď τ̂1û
S

pµ1q ` τ̂2û
S

pµ2q.

ðñ

τ̂1{τ̂2
`

ûS
pµ1

1q ´ ûS
pµ1q

˘

ď
`

ûS
pµ2q ´ ûS

pµ1
2q

˘

,

τ̂1{τ̂2

´

ûS
pµ

2

1q ´ ûS
pµ1q

¯

ď

´

ûS
pµ2q ´ ûS

pµ
2

2q

¯

.

Now, by the convexity of ûS within each action region,
`

ûSpµ1
1q ´ ûSpµ1q

˘

and pûSpµ
2

1q ´

ûSpµ1qq can’t both be negative. Similarly,
`

ûSpµ1
1q ´ ûSpµ1q

˘

and
`

ûSpµ
2

1q ´ ûSpµ1q
˘

can’t

both be positive, since it would imply that
`

ûSpµ2q ´ ûSpµ1
2q

˘

and
`

ûSpµ2q ´ ûSpµ
2

2q
˘

are

both positive, which is in contradiction with convexity. This leaves us with two possible

cases. We will focus on one case, and the proof proceeds analogously in the symmetric case.

Suppose
`

ûSpµ1
1q ´ ûSpµ1q

˘

is positive and
`

ûSpµ
2

1q ´ ûSpµ1q
˘

is negative. This implies
`

ûSpµ2q ´ ûSpµ1
2q

˘

must also be positive. Therefore,
`

ûSpµ2q ´ ûSpµ
2

2q
˘

is negative. Since

sender utility is piecewise affine within R1, R2, we rewrite the above inequalities using the
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directional derivatives and the definitions of µ1
1, µ

2

1, µ
1
2, µ

2

2:

τ̂1{τ̂2

´

τ̂2θ ¨ pµ1
1 ´ µ

2

1q

¯

ď γ ¨ pτ̂2pµ
2
2 ´ µ1

2qq,

τ̂1{τ̂2

´

τ̂1θ ¨ pµ
2

1 ´ µ1
1q

¯

ď γ ¨ pτ̂1pµ
1
2 ´ µ2

2qq.

ðñ

τ̂1

´

θ ¨ pµ1
1 ´ µ

2

1q

¯

ď τ̂2 pγ ¨ pµ2
2 ´ µ1

2qq ,

τ̂1

´

θ ¨ pµ
2

1 ´ µ1
1q

¯

ď τ̂2 pγ ¨ pµ1
2 ´ µ2

2qq .

ðñ

τ̂1

´

θ ¨ pµ1
1 ´ µ

2

1q

¯

“ τ̂2 pγ ¨ pµ2
2 ´ µ1

2qq .

Therefore the information structure µ “ tµ1, µ2, µ3 . . . , µku will at best yield the same sender

utility with µ1 “ tµ1
1, µ

1
2, µ3 . . . , µku, and µ2 “ tµ2

1, µ
2
2, µ3 . . . , µku.

We can further prove the following related claim:

Claim 1. Let |Ω| “ n and |A| “ k. Suppose we have an information structure τ with

supppτq “ µ “ tµ1, . . . , µku satisfying Bayes plausibility. If there exists a posterior in

supppτq where µa P Ra such that µa is a q-extreme points of Ra, with q ą pn´ kq, then there

must exist a Bayes plausible τ 1 ‰ τ that weakly improves sender utility.

Proof. By our previous results in Lemma 4, we know that k-dimensional information

structures can be improved unless they consist of affinely independent posteriors. So without

loss, we can restrict attention to affinely independent k-dimensional information structures.

Since |Ω| “ n , the beliefs over Ω are represented in the pn ´ 1q dimensional space. Let µ1

be a q´extreme point of R1 with q ě pn ´ kq. In other words, µ1 is in the interior of a

q-dimensional convex set S within R1, but there is no q ` 1 dimensional convex set within

R1 such that µ1 is an interior point.

Since R1 is a polyhedron, µ1 belongs to the interior of a q-dimensional face of R1. More-

over, µ1 belongs to µ, which consists of k affinely independent points, so it belongs to the

pk ´ 1q-dimensional affine surface M which consists of the affine hull of µ. Since µ1 be-

longs to a q-dimensional face of R1, by definition, there is a unique q-dimensional affine

surface S containing this face. Additionally, M is pk ´ 1q´dimensional, and S is at least

n ´ k ` 1 dimensional by definition, their intersection S X M is non-empty and includes µ1
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by construction and it is at least 1 dimensional (since n ´ k ` 1
loooomoooon

dimS

` k ´ 1
loomoon

dimM

“ n ą n ´ 1).

We can find a radius ε small enough such that Bεpµ1q X pS X M X R1q ‰ H, and within

this intersection a line segment , since S X M is at least 1 dimensional. We can find two

points from this line segment µ1
1, µ

2
1 such that µ1 is a convex combination of µ1

1, µ
2
1 with

pαqµ1
1 ` p1 ´ αqµ2

1 “ µ1.

Therefore we can ‘split’ µ1 into µ
1
1, µ

2
1 to build the k`1 dimensional information structure

µ̃ “ tµ1
1, µ

2
1, µ2, . . . , µku which will satisfy Bayes plausibility with the new adjusted weights

tατpµ1q, p1 ´ αqτpµ1q, τpµ2q, . . . , τpµkqu. This yields utility:

τpµ1qppαqûs
pµ1

1q ` p1 ´ αqûs
pµ2

1qq `

k
ÿ

i“2

τpµiqû
s
pµiq ě

τpµ1qûs
pµ1q `

k
ÿ

i“2

τpµiqû
s
pµiq,

by convexity of ûs within R1.

Since µ̃ consists of k ` 1 points belonging to a k ´ 1 dimensional affine surface, it cannot

be affinely independent. Then, using lemma 4, we can find an improvement by dropping one

posterior from µ̃, which weakly improves on the utility gained by inducing µ “ tµ1, . . . , µku.

■

Proof of Corollary 2

We have |A| many action zones with finitely many 0-extreme points. Let us denote the

total number of 0-extreme points of all the sets tRauaPA Ă ∆pΩq with E.

An optimal information structure µ “ pµ1, . . . , µkq should have a support with at least

pk´1q 0-extreme points. There are
`

E
k´1

˘

way of picking pk´1q different 0-extreme points. Let

us denote an arbitrary choice of pk ´ 1q unique 0-extreme points with µ´k “ pµ1, . . . , µk´1q.

If µ0 P copµ´kq then the information structure µ´k itself is a candidate for the optimal

and in fact the optimal sender utility can be achieved with only pk ´ 1q signals.

If µ0 R copµ´kq, we can define the set of µk such that for µ “ pµ´k, µkq we get that

µ0 P copµq.

This set corresponds to the intersection of the affine polyhedral convex cone generated

by µ´k ` µ0 “ pµ1 ` µ0, . . . , µk´1 ` µ0q - which we denote M “ tµ0 “
řk´1

i“1 pαiµi ` µ0q|αi ě

0@i P t1, . . . , k ´ 1uu and the simplex ∆pΩq. Define the set S “ M X ∆pΩq

By the definition of the set M , we have that for each µk P S Ă ∆pΩq there exists
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α “ pα1, . . . , αkq with αi ą 0 for all i “ 1, . . . , k such that
ř

αiµi “ µ0.

Now if µ “ pµ´k, µkq is not affinely independent, then we can drop some posteriors from

µ̃ using the protocol described in Lemma 4 and obtain an affinely independent information

structure. Moreover, we know µ̃ ‰ µk since µ0 R copµ´kq violating Bayes plausibility.

If it is the case that µ “ pµ´k, µkq is affinely independent, we have established that for

each µ - hence for each choice of µk P M - the weights α are uniquely determined. Hence,

given µ´k the choice of µk determines the sender utility uniquely.

Now we turn to the question of choosing µk. First note that M is a polyhedral cone, so

it defines a convex polyhedra in Rn, Moreover, its intersection with ∆pΩq - an n-dimensional

polytope- is a convex polytope. Moreover, S “ M X ∆pΩq has at most dimension k ă n.

By these facts, it follows that for every action region Ra, the restriction of Ra to the set S,

denoted Ra “ Ra X S is a convex polytope of dimension at most k.

We will now show that when we are choosing µk which must lie in a set Ra, the optimal

choice of µk P Ra can be always restricted to lie on the 0-extreme points of the sets tRauaPA.

Suppose not, let µk be a q-extreme point for q ą 0. We can now proceed analogously to proof

of Lemma 5 and find a ϵ-ball around µk that will stay inside S and Ra. Our assumption

on µk being a q-extreme point implies that it belongs to a q-face of Ra. Moreover, since S

is n-dimensional and the q-face µk belongs to is q ą 0 dimensional, their intersection has

dimension of at least 1.

Within this intersection, we can therefore find a line segment and points on this line

segment µ1
k, µ

2
k such that µk is a convex combination of µ1

k, µ
2
k with pαqµ1

k ` p1 ´ αqµ2
k “ µk.

Again following the same line of argument with Lemma 5, we can show that either the

information structure tµ´k, µ
1
ku or tµ´k, µ

2
ku weakly improves over tµ´k, µku. This shows

that we can, without loss, pick µk from the 0-extreme points of Ra.

Hence, given a choice of pµ1, . . . , µ´kq - which are all 0-extreme points of tRauaPA , the

choice of the kth point has finitely many candidates identified as the 0-extreme points of the

sets tRauaPA “ tRa X SuaPA. There are at most |A| “ m sets in this collection with finitely

many 0-extreme points. So the optimal information structure can be found in finitely many

steps, specifically by choosing the first pk ´ 1q posteriors in
`

E
k´1

˘

different ways, and adding

the final kth posterior by checking the 0-extreme points of the sets tRauaPA “ tRa X SuaPA.

Proof of Proposition 3

Suppose τk is the optimal information structure with k signals, and τk´1 is the optimal in-

formation structure with k ´ 1 signals. Denote by V ˚pkq, V ˚pk ´ 1q the utilities obtained

using these information structures.
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Let supp pτkq “ tµ1, . . . , µku. Observe that we can create a k ´ 1 dimensional informa-

tion structure that maintains Bayes plausibility by choosing two posteriors, say µ1, µ2, and

define a new posterior as their mixture:

µ12 “
τkpµ1q

τkpµ1q ` τkpµ2q
µ1 `

τkpµ2q

τkpµ1q ` τkpµ2q
µ2

And define the new information structure with supp pτ 1
12q “ tµ12, µ3, . . . , µku, which main-

tains Bayes plausibility with the new weights tpτkpµ1q ` τkpµ2qq, τpµ3q, . . . , τpµkqu.

Now, we can define k different information structures containing k ´ 1 posteriors each,

denoted µ12, µ23, . . . , µk´1,k, µk1 where we mix the consecutive posteriors µl, µl`1 and use the

weights defined above to satisfy Bayes plausibility. By the optimality of τk´1 among the

information structures with k ´ 1 signals, we must have the following k inequalities:

V ˚
pk ´ 1q ě pτkpµ1q ` τkpµ2qquS

ˆ

τkpµ1q

τkpµ1q ` τkpµ2q
µ1 `

τkpµ2q

τkpµ1q ` τkpµ2q
µ2

˙

` τkpµ3quS
pµ3q ` ¨ ¨ ¨ ` τkpµkquS

pµkq,

V ˚
pk ´ 1q ě τkpµ1qu

S
pµ1q ` pτkpµ2q ` τkpµ3qquS

ˆ

τkpµ2q

τkpµ2q ` τkpµ3q
µ2 `

τkpµ3q

τkpµ2q ` τkpµ3q
µ3

˙

` ¨ ¨ ¨ ` τkpµkquS
pµkq,

...

V ˚
pk ´ 1q ě τkpµ1quS

pµ1q ` ¨ ¨ ¨ `

pτkpµk´1q ` τkpµkqquS

ˆ

τkpµk´1q

τkpµk´1q ` τkpµkq
µk´1 `

τkpµkq

τkpµk´1q ` τkpµkq
µk

˙

,

V ˚
pk ´ 1q ě τkpµ2qu

S
pµ2q ` τkpµ3qu

S
pµ3q ` ¨ ¨ ¨ `

pτkpµ1q ` τkpµkqquS

ˆ

τkpµ1q

τkpµ1q ` τkpµkq
µ1 `

τkpµkq

τkpµ1q ` τkpµkq
µk

˙

Dividing all inequalities by k and summing up, we have:

V ˚
pk ´ 1q ě

k ´ 2

k
V ˚

pkq `
2

k
V 1

ě
k ´ 2

k
V ˚

pkq
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Where V 1 is the utility gained from the k dimensional information structure consisting of the

posteriors tµ12, µ23, . . . , µk´1,k, µk1u. This implies the following upper bound on the value of

an additional signal at k ´ 1 signals:

V ˚
pkq ´ V ˚

pk ´ 1q ď
2

k
V ˚

pkq

Equivalently, the following relationship must hold between the maximum utilities attainable

between k and k ´ 1 signals:

k ´ 2

k
V ˚

pkq ď V ˚
pk ´ 1q ď V ˚

pkq

When the sender utility uS can be negative and has the infimum uS, the above inequalities

can be equivalently stated as follows:

V ˚
pkq ´ V ˚

pk ´ 1q ď
2

k

`

V ˚
pkq ´ uS

˘

,

k ´ 2

k
V ˚

pkq `
2

k
uS

ď V ˚
pk ´ 1q ď V ˚

pkq.

Proofs of the statements in section 4.1

Let pE, E⃗q denote an Euclidean affine space with E being an affine space over the set of

reals such that the associated vector space is an Euclidian vector space. We will call E the

Euclidean Space and E⃗ the space of its translations. For this example we will focus on three

dimensional Euclidian affine space i.e. E⃗ has dimension 3. We equip E⃗ with Euclidean dot

product as its inner product, inducing the Euclidian norm as a metric. To simplify notation,

we will simply write pR3, R⃗3q. Given this structure, we can define the unitary simplex in

the affine space R3 by the following set where ωi corresponds to the point with 1 in its ith

coordinate and 0 in all of its other coordinates. We define the state space Ω “ tω1, ω2, ω3u.

The simplex then becomes:

∆pΩq “

"

µ P R3
|µ “ λ1ω1 ` λ2ω2 ` λ3ω3 such that

3
ÿ

i“1

λi “ 1 and 1 ą λi ą 0 @i P t1, 2, 3u

*
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Building on the problem definition in the main text, we focus on Bayesian persuasion games

where the receiver preferences are described with thresholds, i.e. the receiver prefers action

ai P ta1, a2, a3u if and only if the posterior belief µs P ∆pΩq such that µspωiq ě T , and

prefers a0 otherwise. Hence, we can say that for i P t1, 2, 3u, j P t0, 1, 2, 3u and j ‰ i we have

EµsruRpai, ωqs ě EµsruRpaj, ωqs if and only if µspωiq ą T . Define δ1 “ p0, 1 ´ T,´p1 ´ T qq,

δ2 “ p1´T, 0,´p1´T qq and δ3 “ p1´T,´p1´T q, 0q and Γ1 “ pT, 0, 1´T q, Γ2 “ p0, T, 1´T q

and Γ3 “ p0, 1 ´ T, T q. The action zones will become:

Ri “ tµs P ∆pωq|µi
s ě Tiu “ ∆pωq X tpµ ´ Γiq ¨ δi ě 0|µ P R3

u,

where ¨ denotes the Euclidean dot product.

Proof of Lemma 6

Let us first characterize the set ∆c. We have21 ∆c “ ∆pΩqzco2pR1 Y R2 Y R3qq. We note

that:

copR1 Y R2q “coptω1, pT, 1 ´ T, 0q, pT, 0, 1 ´ T q, ω2, p1 ´ T, T, 0q, p0, T, 1 ´ T quq

“cotω1, pT, 0, 1 ´ T q, ω2, p0, T, 1 ´ T qu (3)

and similarly for copR1 Y R3q and copR2 Y R3q we have that

copR1 Y R3q “cotω1, pT, 1 ´ T, 0q, ω3, p0, 1 ´ T, T qu (4)

copR2 Y R3q “cotω2, p1 ´ T, 0, T q, ω3, p1 ´ T, 0, T qu (5)

The second line follows from the first line since the tω1, pT, 0, 1´T q, ω2, p0, T, 1´T qu cor-

responds to the extreme points of coptω1, pT, 1´T, 0q, pT, 0, 1´T q, ω2, p1´T, T, 0q, p0, T, 1´

T quq. Similarly using equation (3), (4) and (5), copRi Y Rjq can be identified as the inter-

21co denotes convex hull operator and cok denotes k-convex hull i.e. cokpAq are the points that can be
represented as convex combination of k elements in A.
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section of a half space and the simplex i.e.

copR1 Y R2q “ ∆pΩq X tpµ ´ pT, 0, 1 ´ T qq ¨ p´T, T, 0q ě 0|µ P R3
u (6)

copR1 Y R3q “ ∆pΩq X tpµ ´ pT, 1 ´ T, 0qq ¨ p´T, 0, T q ě 0|µ P R3
u (7)

copR2 Y R3q “ ∆pΩq X tpµ ´ p1 ´ T, T, 0qq ¨ p0,´T, T q ě 0|µ P R3
u (8)

So we can define ∆c Ă ∆pΩq as ∆c “ ∆pΩqzco2pR1 Y R2 Y R3q. By (6), (7) and (8) we can

see that ∆c is defined as

∆c “ tµ “ pµ1, µ2, µ3q P ∆pΩq|@i P t1, 2, 3u, µi ą 1 ´ T u

By definition of ∆c and ∆pΩq this set is non-empty if and only if T ą 2
3
.

Proof of Lemma 7

We can identify the upper bounds through the following problem:

V p2, µ0q “ max
iPt1,2,3u

ˆ

max
µ0P∆c,µiPRi,µ4PR4

1 ´
dpµi, µ0q

dpµ4, µ0q

˙

subject to µ0 P copµi, µ4q.

First note that by the symmetry of the problem choice of i is not relevant. Without

loss of generality we pick i “ 1. Moreover, the constraint that µ0 P copµi, µ4q implies

that we are searching for a point with the goal of minimizing the distance with µi and

maximizing the distance with µ4. The maximizing triple is therefore pµ˚
0 , µ

˚
1 , µ

˚
4q with µ˚

0 “

p1 ´ T, 1 ´ T, 2T ´ 1q, µ˚
1 “ p1´T

2
, 1´T

2
, T q µ˚

4 “ p0, 1
2
, 1
2
q. The solution follows from two

observations. One is that given two points µ0 and µi there is a unique line passing through

these points hence µ4 is identified to be the furthest point on that line such that µ4 P R4.

The line always intersects with R4 as otherwise µ0 R ∆c by construction. Then we choose µ0

and µi to minimize dpµ0, µiq where dpµ0, µiq is measured in the space of translations of R3.

Given this solution, we have that:

||pT,
1 ´ T

2
,
1 ´ T

2
q ´ p2T ´ 1q, 1 ´ T, 1 ´ T || “

?
6

2
p1 ´ T q

||pT,
1 ´ T

2
,
1 ´ T

2
q ´ p0,

1

2
,
1

2
qq|| “

?
6

2
T
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Giving us that V p2, µ0q “ 2T´1
T

. Similarly, we can solve:

V p2, µ0q “ min
iPt1,2,3u

ˆ

max
µiPRi,µ4PR4

ˆ

min
µ0P∆c

1 ´
dpµi, µ0q

dpµ4, µ0q

˙˙

subject to µ0 P copµi, µ4q.

We observe that the point µ˚
0 “ B “ p1

3
, 1
3
, 1
3
q is a solution. This follows from the fact that

B is the barycenter of the simplex, and R1, R2 and R3 are defined with the same threshold T .

Thus, any prior µ0 ‰ B implies that the µ0 is closer to one of the action zones. Minimizing

the objective, we pick µ˚
0 “ B. Now given this choice, we choose µ4 to maximize leading to

the choice of µ˚
4 “ p0, 1

2
, 1
2
q and µ˚

1 “ p1´T
2
, 1´T

2
, T q.

Interestingly, the posteriors induced in the optimal information structure for the two

problems are the same, but they are induced with different probabilities. This follows from

the fact that the hyperplanes defining the action zones is parallel to one of the hyperplanes

defining the simplex. So we can write V p2, µ0q “ 1
3T
.

Proof of corollary 3

Observe that with fixed T “ 2{3, we have V p2, µ0q “ 1
2

“ V p2, µ0q. Also, V p2, µ0q “ 2T´1
T

is increasing in T and V p2, µ0q “ 1
3T

is decreasing in T . By continuity of distance, the ob-

jective function in the definition of V p2, µ0q and V p2, µ0q are continuous. So for any other

µ0 P ∆c, V p2, µ0q takes every value between V p2, µ0q and V p2, µ0q by intermediate value

theorem. By definition, V p2, µ0q ą 1
2
implies decreasing marginal value of a signal and

V p2, µ0q ă 1
2
implies increasing marginal value of a signal.

Proof of Proposition 4

We will first establish a series of lemmas that shows the connection between choosing

k-dimensional dimensional information structures in a belief space in Rn, and optimally

compressing n states to k states, and then solving a Bayesian persuasion problem in the new

belief space in Rk. After showing this result for Bayesian persuasion games, the statement

in proposition 4 immediately follows as a corollary.

Lemma 12.

max
τ

Eµ„τ û
s
pµiq| subject to Eµ„τµ “ µ0 , |supp pτq| ď k (9)
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achieves the same optimal value with the problem:

max
TPTk

max
τ

Eµ„τ û
s
pµiq|T subject to Eµ„τµ “ µ0 , |supp pτq| ď k and supp pτq Ă Tk (10)

Proof.

We will first show that a solution to the second maximization problem exists. In order

to see this we first establish the compactness of Tk.

Lemma 13. Tk is a compact smooth manifold. Moreover, T P Tk can be represented with

the projection matrix of its parallel subspace W “ spanpµ̃1, . . . , µ̃kq.

Proof. Tk is homemorphic to the space that parameterizes all k-dimensional linear subspaces

of the n-dimensional vector space which is called the Grassmannian space, which we will

denote GkpRnq. The homeomorphism is obtained by subtracting µ0 from each line equation.

The Grassmannian GkpRnq is the manifold of all k-planes in Rn, or in other words, the

set of all k´dimensional subspaces of Rn. Define the Steifel manifold Vk pRnq as the set of

all orthonormal k-frames22 of Rn. Hence, elements of Vk pRnq are k-tuples of orthonormal

vectors in Rn. Vk pRnq is identified with a subset of the cartesian product of k many pn ´ 1q

spheres23 i.e. pSn´1q
k
. Using this representation, we can use the inherited topology from

Rnˆk when discussing the compactness of Vk pRnq. Noting that it is a closed subspace of a

compact space, we can easily conclude the Steifel manifold Vk pRnq is compact.

Next, we define a map Vk pRnq ÝÑ Gk pRnq which takes each n-frame to the subspace it

spans. Letting Gk pRnq be constructed via the quotient topology from Vk pRnq, we establish

that Gk pRnq is also compact. This also establishes that Tk is a compact smooth manifold,

as it is just an affine translation of Gk pRnq.

Now we will show that T P Tk can be represented with the projection matrix of its parallel

subspace W “ spanpµ̃1, . . . , µ̃kq. Consider the set of real n ˆ n matrices Xkpnq that are (i)

idempotent, (ii) symmetric and (iii) have rank k. The requirement that a matrix X P Xkpnq

has rank k is equivalent to requiring X has trace k.24

To prove the second claim, it suffices to define a homeomorophism between Xkpnq and

Gk pRnq. The homeomorphism ϕ is ϕpXq “ CpXq, ϕ : Xkpnq Ñ GkpRnq where CpXq de-

22A k-frame is is an ordered set of k linearly independent vectors in a vector space. It is called an
orthogonal frame if the set of vectors are orthonormal

23Sn´1 “ tx P Rn : }x} “ 1u.
24This follows the fact that X is idempotent. An idempotent matrix is always diagonalizable and its

eigenvalues are either 0 or 1 (Horn and Johnson, 1991). Trace of X is the sum of its eigenvalues, hence gives
the rank of X.
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notes the column space of X. Moreover, letting XW be the operator for projection to sub-

space W and XW 1 be the operator for projection to subspace W 1 we can define the metric

dGkpRnq pW,W 1q “ }XW ´ XW 1} where}¨} is the operator norm, that metrizes Gkpnq. ■

We call the projections from ∆pΩq onto the flat T P Tk a k-dimensional summary, as it is

a lower dimensional representation of the n´dimensional state space. When we talk about

the flat T , we will be actually talking about its intersection with the simplex, T X ∆pΩq,

but we will be omitting the intersection for brevity. We will now show that the value of the

interior maximization problem is upper-semi continuous in T . Formally we prove this with

the following lemma:

Lemma 14. The optimal value of the maximization problem:

V pT q “ max
τ

pEµi„τ û
s
pµiq|T q subject to Eµi„τ pµiq “ µ0, supppτq “ µ Ď T

is upper semi-continous in T .

Proof.

We will start with discussing some preliminary facts. The maximum and hence the value

function V pT q exists by the results in Kamenica and Gentzkow (2011), since the sender

is solving a full dimensional Bayesian persuasion problem over T which is shown to be

homeomorphic to Rk.

Let µT be the optimal information structure on the flat T that is represented with the

parallel subspace W and projection matrix XT . Let µT 1 be the optimal information structure

on the flat T 1 represented with the parallel subspace W 1 and projection matrix XT 1 . The

statement of the lemma is formally @ϵ ą 0, there exists a δ ą 0 such that whenever we have

|XT ´ XT 1 | ă δ, we get V pµT 1q ď V pµT q ` ε.

Finally, we know that pEµi„τ û
spµiqq is upper semi-continuous in µ. So for any ε, there

exists a δϵ such that whenever ||µ ´ µ1|| ă δϵ, we get V pµ1q ď V pµq ` ϵ.

Now observe that:

||XT ´ XT 1 || “ sup
µ̃

t||pXT ´ XT 1qµ|µ P Rn and ||µ|| ď 1||u “ sup
T 1

t||pXT ´ XT 1qµ|µ P ∆pΩq|u.

Define MT and MT 1 as information structures consisting of vectors tmT |mT P T XBd∆pΩqu
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and tmT 1 |mT 1 P T 1 X Bd∆pΩqu. We will show:

||XT ´ XT 1 || “ ||pXT ´ XT 1qµ̃|| ě γ||MT ´ MT 1 || ě γ||µT ´ µT 1 ||

Let us first show that ||pXT ´ XT 1qµ̃|| ě γ||MT ´ MT 1 ||. First, by definition of matrix

norm ||pXT ´ XT 1qµ̃|| ě ||MT ´ MT 1 ||max “ maxrPR ||mr
T ´ mr

T 1 ||2. By equivalence of finite

dimensional norms, there exists a constant γ such that ||MT ´ MT 1 ||max ě γ||MT ´ MT 1 ||.

Hence, we obtain that ||pXT ´ XT 1qµ̃|| ě γ||MT ´ MT 1 ||.

Now let us turn to the last inequality γ||MT ´MT 1 || ě γ||µT ´µT 1 ||. This follows by making

µ0 the origin via subtracting µ0 i.e. MT ´µ0, MT 1 ´µ0, µT ´µ0, µT 1 ´µ0 in RN and noticing

that for u and v in RN ||αu ´ βv|| is monotone in α and β.

Recall that, pEµi„τ û
spµiqq is upper semi-continuous in µ. So for any ε, there exists a δϵ such

that whenever ||µ ´ µ1|| ă δϵ, we get V pµ1q ď V pµq ` ϵ. Then for each ε ą 0 one can pick

δ “ 1
γ
δε to ensure that

1

γ
δε ą ||XT ´ XT 1 || ě ||µT ´ µT 1 ||.

This ensures the upper semicontinutity of V pT q i.e. @ϵ ą 0, there exists a δ ą 0 such that

whenever we have |XT ´ XT 1 | ă δ, we get V pµT 1q ď V pµT q ` ε. ■

By above lemmas, the existence of the optimal for the second maximization problem in

lemma 12 follows from topological extreme value theorem as it is shown to be an upper

semi-continuous function maximized over a compact smooth manifold to reals. To complete

the proof of lemma 12, it is straightforward to show that the two maximization problems

yield the same maximum. Let µ1 be the maximizer of equation (9) and µ2 be the maximizer

of equation (10). We show that V pµ1q “ V pµ2q where V is the value function. Suppose not,

let V pµ1q ą V pµ2q. But then in the second problem, we could have picked Tµ1 “ affpµ1q

where aff denotes affine hull, and µ “ µ1 to get a higher value, contradicting the optimality

of µ2. Now suppose V pµ1q ă V pµ2q, but then directly picking µ2 in the first problem yields

a better payoff, contradicting to the optimality µ1 in the first problem. ■

Having established all these results, the proof of proposition 4 follows from Lipnowski and

Ravid (2020) and the result in lemma 12. To see the equivalence of the maximization problem

in Lipnowski and Ravid (2020) with the v˚
k “ maxTkPTk

`

maxτPTk

`

minµPsupp τ Eω„µu
Spµq

˘˘

,
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it suffices to show that

max
τ

min
µPsupp pτq

CHkpûs
qpµq subject to Eµ„τµ “ µ0

is equivalent to

max
TkPTk

max
τPTk

min
µPsupp τ

CHpûs
qpµq subject to Eµ„τµ “ µ0.

Existence for the first maximum problem follows from existence results in Lipnowski and

Ravid(2020) and the fact that tτ P ∆p∆pΩqq|Eµ„τµ “ µ0 and |supp τ | ď ku is a closed sub-

set of tτ P ∆p∆pΩqq|Eµ„τµ “ µ0u. The equivalence follows from lemma 12 proven above.

First it is already shown that Tk is compact, and secondly maxτPTk
minµPsupp τ CHpûsqpµq is

upper semicontinuous due to upper semi-continuity of ûs.
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