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Abstract

We introduce a model in which homophily in social networks affects both the qual-

ity and diversity of the information to which people have access. Homophily provides

higher-quality information about the actions that a group takes, since observing the

payoffs of another person is more informative the more similar that person is to the

decision maker. However, homophily can lead to observations about fewer actions if

people similar to the decision maker choose a limited set of actions. This can lead to

inefficiencies as well as inequalities across groups. We characterize conditions under

which homophily hurts rather than helps social learning. Homophily lowers efficiency

and increases inequality in sparse networks, but enhances efficiency and decreases in-

equality in dense enough networks. We also show that optimal (learning-maximizing)

networks exhibit assortativity in payoff-determining characteristics, which results in in-

cidental homophily on other innate characteristics, providing an explanation for some

empirical patterns.
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1 Introduction

Chetty et al. (2022a) showed that “economic connectedness,” is by far the strongest predictor

of economic mobility in the United States out of a broad set of types of social capital.

Specifically, a lack of friendships across economic divides predicts that people growing up in

poor households are significantly more likely to stay poor. Moreover, Chetty et al. (2022a)

find that once such homophily is accounted for, the prominent relationship between inequality

and immobility is mediated.1 Places with lower levels of connection between rich and poor are

both more unequal and have lower economic mobility. One hypothesis from such findings

is that information bridging capital—friendships across groups that might have different

information—leads to better social learning about advantageous opportunities, which can

lead to both greater equality and mobility. In this paper, we build a model that allows us

to study that and related hypotheses.

Given that people communicate most frequently with people with similar traits and

backgrounds—due to homophily—they can end up only learning about a limited set of

options, thus missing out on valuable opportunities. Different groups might not only end

up with differing levels of education and outcomes within a generation, but this can persist

across generations. Thus, it is important to understand how, when, and why homophily

induces systematic differences in people’s beliefs, behaviors, and dynamic outcomes.

On the plus side, homophily improves how much people learn from friends’ experiences,

since they can learn more from seeing whether someone similar to them succeeds at some

task (e.g., going to a certain graduate school program), compared to seeing the outcome

for someone with a different background and skills. For example, Porter and Serra (2020)

show that female role models are influential in determining other female students’ major

choices. Sorensen (2006) shows that employees learn more about health plan choices from

colleagues with similar backgrounds, Conley and Udry (2010) show that farmers learn more

about agricultural techniques when their peers have a similar wealth level, and Malmendier

and Veldkamp (2022) examine the influence of who communicates information on decisions

of vaccine adoption among other things (see also the seminal work by Katz and Lazarsfeld

(1955)). Thus, homophily can improve the quality of information that someone gets from

their network.

On the minus side, homophily can lead a person to learn only about a limited set of

choices. If a person’s friends are from predominately one group, and they tend to make the

same choice, then that person ends up learning about that choice, but not about others. For

example, many investors invest disproportionately in domestic equities, ignoring the benefits

of diversifying into foreign equities (French and Poterba, 1991).2 Therefore, homophilistic

1The relationship between inequality and immobility is known as the Great Gatsby Curve: see Corak
(2016); Jackson (2019, 2021) for background.

2This behavior is not easily explained by direct barriers, e.g., transaction costs and capital controls
(Ahearne, Griever, and Warnock, 2004). Information asymmetries and lower resulting posterior/residual
risk seem to be key drivers of such biases (Ahearne, Griever, and Warnock, 2004; Van Nieuwerburg and
Veldkamp, 2009; Portes and Rey, 2005).
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groups of people can end up herding on inefficient decisions because those are the ones about

which they have the best information, which then becomes persistent. Thus, homophily can

limit the quantity and diversity of network information.

We model this tradeoff by having agents choose between a “safe” action with payoff

normalized to 0 and a “risky” action with unknown payoff. For instance, an agent may

be choosing between taking a minimum wage job or going to a university. Agents know

their costs, but do not know the benefit of the risky action.3 Agents with costs above the

unknown benefit would be better off taking the safe action, while all those with costs below

the benefits should take the risky action.

The model has overlapping generations. Current agents see the choices of their friends

from the previous cohort, know their friends’ costs, and see whether their friends succeeded

or failed (got a net positive or negative payoff) if they take the risky action. Two things

limit agents’ learning. One is that they may have a different cost than their friend(s): for

instance an agent who has a high cost who sees a low-cost agent succeed with the risky

action is not sure whether they will also succeed. The other is that they only learn about

the risky action’s payoff if some of their friends take the risky action. This enables us to

study these competing forces: gaining more precise information from other agents who have

similar costs, but potentially failing to learn about the risky action if observed agents do not

take it.

In particular, agents belong to one of two groups: blues or greens (e.g., income groups,

ethnic groups, genders, caste groups, etc.). These groups can have different cost distributions.

Homophily in terms of greens being more likely to have green friends, and blues more likely

to have blue friends, means that friends are more likely to have similar costs than two people

at random. This fuels the positive influence of homophily. However, in equilibrium blues

and greens end up taking the risky action with different probabilities, which means that an

agent is more or less likely to have a chance to learn about the risky action depending on

which group a friend belongs to.

We find that having fewer friends or facing greater uncertainty about the payoff to the

risky action increase the negative impact of homophily (inducing more learning failures for

a group). In particular, with small numbers of friends and high amounts of homophily, a

group can end up herding on inefficient decisions because of a lack of information about the

risky action. Once people have more friends or face less uncertainty, then they are more

likely to observe the risky action being taken (or make inferences from it not being taken)

which improves learning of both groups, and eventually it becomes more important to be

learning from people with similar costs, and then homophily is beneficial.

It also turns out that higher correlations between the costs across groups increase the

positive impact of homophily. The intuition behind this is layered and nuanced. On the

one hand, higher correlations in costs across groups leads to greater learning across groups,

3This is a somewhat artificial distinction, and one could add uncertainty over costs. What is important
is that there is heterogeneity in overall payoffs and risky-action payoffs are uncertain to some agents at an
interim stage.
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which would superficially seem to lower the benefit of homophily. However, this also means

that all groups learn more about the risky action, which then has a feedback of increasing

the benefit of homophily. This shows how endogeneity of the action can reverse the impact

of homophily.

The model also provides a first explanation for some new observations about homophily.

A recent empirical investigation of homophily among university students (Jackson, Nei,

Snowberg, and Yariv, 2022) identifies several new facts. First, there are more individuals who

have very high and very low levels of homophily than what would happen with homophilistic

random link formation (e.g., in a stochastic block model).4 Second, there is assortativity in

this homophily: the most homophilous individuals are relatively more likely to be friends

with the others who are most homophilous, and the least homophilous are more likely to be

friends with the least homophilous. Third, and hardest to explain is that there is negative

assortativity in cross-group friendships: cross-group friendships are more likely to be between

a low-homophily type from one group and a high homophily type from another group.

Our model provides an explanation for all three facts, as we show in Section 4. In

particular, we show that the optimal network structure for social learning (for all agents) is

one in which there is assortativity in costs. We then show that if the two groups have different

distributions of costs—so that for instance, greens are relatively more likely to have higher

costs than blues—then having friends with similar costs induces all three observed facts

about homophily when it comes to friendships in blue-green space. That is, assortativity in

cost space when projected into blue-green space induces homophily patterns among blues

and greens that exactly match the observed empirical patterns. High cost greens are more

homophilous than low cost greens, and the reverse for blues. High cost greens are more likely

to be connected to other high cost greens, and thus to the most homophilous agents. And

when greens connect to blues, it is the most homophilous greens (high cost ones) with the

least homophilous blues (the high cost ones).

This is a phenomenon that we term “incidental homophily.” Having homophily in one

dimension (e.g., costs), and having that dimension not be independent of another dimen-

sion (e.g., blue and greens having different cost distributions), induces homophily in the

blue-green space that has individual level heterogeneity in homophily, homophily in that

homophily, and negative cross-type correlations.

Our paper relates to various strands of the social learning literature. The herding here

differs from the usual forms of herding that we term (Banerjee, 1992; Bikhchandani, Hir-

shleifer, and Welch, 1992) inference herding and that occur due to cascading inferences of

agents who end up choosing actions independently of their private information. Here the

herding comes from portions of the population not observing the payoffs to the risky action,

4As a simple numerical illustration, suppose that each person has two friends, and those each have a p
chance of being same ethnicity. Then a fraction p2 of the population should have both friends same ethnicity
and (1−p)2 fraction of the population should have neither friend same ethnicity, while 2p(1−p) should have
one friend of the same ethnicity. In the data, there are relatively higher fractions having both or neither,
and lower fractions with intermediate levels of homophily.
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even when it is taken by some other group. We refer to this type of herding as sample

herding, to distinguish it from inference herding.

Our model draws on the idea that people learn more from those most similar. That

idea has been explored previously in other contexts (Kets and Sandroni, 2016; Sethi and

Yildiz, 2016), including work that explores the tradeoff between learning from similar versus

diverse sources; e.g. Aral and Van Alstyne (2011). Our work provides new insights into how

homophily leads to sample herding and its efficiency and inequality consequences.

Our social learning model is “active” in that information is endogenously generated de-

pending on the choices of the agents. The effects of homophily have been previously studied

in “passive” settings, in which people communicate exogenously given information through a

network. For example, Golub and Jackson (2012) show that homophily can slow learning in

a model of repeated communication of beliefs and updating of posteriors. In another study

of passive learning, Lobel and Sadler (2016) find a tradeoff for homophily. In contrast to

our result, in their setting homophily is less useful in dense networks and more useful in

sparse networks. The key difference is the active/passive distinction: we have endogenous

actions which generate different information as a function of the network, while in Lobel and

Sadler (2016) network density effects the ability of agents to interpret the signals, but signals

received are not changing with network density. Thus, having the actions chosen depend

upon homophily provides new and different insights, especially regarding homophily-based

herding and its implications for efficiency and inequality.

Recent work has shown that homophily in job-market referral networks can lead to dif-

ferences in behaviors and outcomes across groups (Buhai and van der Leij, 2020; Bolte,

Immorlica, and Jackson, 2020; Miller and Schmutte, 2021). This can result in inefficiencies,

inequality, and immobility. Although some of the consequences are similar, the reasons are

quite distinct and hence have different policy implications. In the context of the referral

model, reducing homophily is unambiguously good, while here homophily’s effects are am-

biguous and depend on the density of the network and the underlying cost and information

setting.

2 The Model

2.1 Agents, Actions, and Payoffs

A continuum of agents, with size normalized to unity, each belong to one of two groups:

“blues” or “greens,” denoted by {b, g}. The relative fractions are λb > 0 and λg = 1−λb > 0.

Two actions are available to each agent. One is a “safe” action (e.g., working a minimum

wage job) with a known value that is normalized to 0. The second action is the “risky”

action (e.g., going to university). The risky action has a random value of its benefit v that

takes on a finite set of values described by the probability function Pr(v). The risky action

is costly. The distribution of costs are group-dependent and take on a finite set of values
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described by the probability functions Prg(c),Prb(c), respectively. The net payoff to an agent

with cost c who takes the risky action is v − c when the realized value is v.

To avoid ties, we assume that the value and cost supports are distinct. Thus, the ex post

value of the risky action to any agent is either positive or negative.

Each agent knows their own idiosyncratic cost c of taking the risky action, but does not

know the random value v. We describe how agents form expectations next.

2.2 Learning and Dynamics

Agents live in overlapping generations. In each period t ∈ {1, 2, . . .}, a new continuum of

agents are born and each decide which action to take. Before making this decision, agents

learn from their friends in the previous generation.

Groups can differ in the number of friends that they have and in the rate of homophily

in their friendships. The underlying information network is described by a directed network

(a directed graphon). Group θ ∈ {b, g} agents have an integer dθ > 0 number of friends from

the previous generation. Each of these friends are from the same group with probability hθ,

and from the other group with the remaining probability 1− hθ. The actual distribution of

how many of an agent of group θ’s friends are from their own group is then an independent

binomial random variable with dθ draws, each with probability hθ. Each draw of a group picks

an agent from that group with uniform probability. Thus, for instance, there is probability

hθ Prθ(c) that any given friend of a type θ agent is from group θ and has cost c, and probability

(1 − hθ) Prθ′(c) that the friend is from group θ′ 6= θ and has cost c. The friendships are

independent across agents and friendships.5

Agents see each friend’s action choice, group, cost, and whether their net payoff was posi-

tive or negative, but not the precise value v. In particular, each of an agent’s dθ observations

is in the form (o, c, θ′) ∈ {−,+, ∅} × IR × {b, g}. The first dimension o is a summary of the

action choice and outcome o = + indicates that the observed agent took the risky action

and got a positive payoff, o = − indicates the agent took the risky action and got a negative

payoff, and o = ∅ indicates that the agent took the safe action.

Agents update their beliefs about v based on their observed vector of dθ signals, as a

function of their knowledge of the equilibrium structure. The information that an agent of

generation t + 1 needs as a basis for updating is the equilibrium fraction of each group θ

agents with cost c taking the risky action in period t as a function of the realization of v.

We denote this by αt(θ, c, v). It is useful to represent αt as a vector in [0, 1](nb+ng)×m where

nθ and m are the cardinalities of the supports of Prθ(c) and Pr(v).

An equilibrium defines a dynamic system starting from some initial conditions α0 ∈
[0, 1](nb+ng)×m. There is a unique evolution of the system. We can also examine a steady-

state (fixed point) in the function space α ∈ [0, 1](nb+ng)×m.

5We abstract from the measurability of i.i.d. random variables in a continuum. Given the finite numbers
of groups and costs and a finite number of friends, these details are addressed by standard convergence
arguments (Duffie and Sun, 2012).

5



An agent’s posterior belief in period t+1, after observing a vector of signals s from period

t agents, is obtained by Bayes’ Rule and denoted by Eθ [v | s, αt(·, ·, ·)].
After observing the vector of signals s, an agent from group θ with cost c takes the

risky action if the posterior expectation is greater than c. Otherwise, the agent takes the

safe action. We break ties in favor of the risky action, but any rule can be used with

corresponding adjustments in the expressions.

The fraction of agents taking the risky action in period t + 1 of group θ and cost c

corresponds to the probability of a receiving a signal profile s such that E [v|s, αt(·, ·, ·)] ≥ c.

Thus, the dynamics of αt(θ, c, v) are:

αt+1(θ, c, v) = P {Eθ [v | s, αt(·, ·, ·)] ≥ c | v, αt(·, ·, v)} . (1)

It follows from (1) that αt+1(θ, c, v) is non-increasing in c.

However, monotonicity in v can fail because what people deduce about v depends on

αt(θ, c, v). Before discussing that, we define steady-state behavior as it provides a key bench-

mark (given convergence).

A function α∗ ∈ [0, 1](nb+ng)×m is a steady state if it solves equation (1) with αt =

αt+1 = α∗. A steady state exists. We omit the existence proof that follows from a standard

fixed-point argument.

Steady states are not always unique. For example, if all agents have the same cost

and the prior has E[v] < c, then for a realization v > c there are two steady-state values:

α∗(θ, c, v) = 0 for both θ and α∗(θ, c, v) = 1 for both θs.

A simple variation on this yields an example of non-monotonicity of the fraction taking

the risky choice taken as v increases. Consider three equally likely values of v: 0, c+ ε and

c+ 2ε. For small ε it follows that E[v] < c. Then α∗(θ, c, c+ ε) = 1 and α∗(θ, c, c+ 2ε) = 0

for both θs is a steady state.

When there are multiple steady-states, only some are stable: We call a steady state

α∗ ∈ [0, 1](nb+ng)×m stable if there exists an ε > 0 such that for every α ∈ [0, 1](nb+ng)×m in

an ε-neighborhood of α∗, the dynamics converge to α∗.

3 The Advantages and Disadvantages of Homophily

We begin by analyzing a simplified version of the model that makes intuitions clear. Through-

out this section the value of the risky action and the costs for each type each take two possible

values (m = ng = nb = 2).

The value v is 1 with probability p, and 0 with probability 1− p. Thus, E[v] = p.

The cost for a group θ ∈ {b, g} agent is cθ > 0 with probability πθ and 0 with the residual

probability 1 − πθ.6 Thus, the risky action is either (ex post) optimal for all agents in the

6To fit with the assumption that costs and values are distinct, one can instead set the low cost to be
negative or the lowest value of v to be slightly positive, so that some agents naturally enjoy the risky action
regardless of its payoff.
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society or else only for those who have 0 cost.

Agents with cost 0 always take the risky action and send a positive signal for both values

of v, so provide no information. Thus, the dynamics are fully characterized by the dynamics

of the green and blue agents who have positive costs. We denote the fraction of blue agents

with cost cb and green agents with cg taking the risky action by bt(v) = αt(b, cb, v) and

gt(v) = αt(g, cg, v), respectively.

In the two-value model, the dynamics are monotonic in the value of the risky action:

bt(1) ≥ bt(0) and gt(1) ≥ gt(0)

for every t ≥ 1. To see this, note that high-cost agents take the risky action if they observe

a signal profile sθ for which the posterior is sufficiently high (Eθ[v|sθ] ≥ cθ). If v = 0, such

signal profiles sθ can only consist of 0-cost agents and positive cost agents who did not take

the risky action ((+, 0, θ′) and (∅, cθ′ , θ′)). Then if v = 1, agents observing any such sθ would

also take the risky action. But such agents also take the risky action if any of the positive

cost agents observed took the risky action. Thus, any signal profile that has the same number

of 0-cost, type θ high cost and type θ′ high cost agents, regardless of their actions, induces

the risky action when v = 1.

3.1 Full Homophily

Before analyzing how homophily impacts learning and behavior, it is useful to solve a bench-

mark case with extreme homophily, hb = hg = 1, which is effectively as if there is only one

group since agents only ever see their own type.

Without loss of generality, consider the green group. If there is full homophily (hg = 1)

and at least one of πg or dg is not equal to 1, then the steady states are:7

• If cg ≤ p, then g∗(0) = (1− πg)dg , g∗(1) = 1 is the unique steady state.

• If cg > p and πgdg ≤ 1, then g∗(0) = 0, g∗(1) = 0 is the unique steady state.

• If cg > p and πgdg > 1, then there are two steady states: g∗(0) = 0, g∗(1) = 0 and

g∗(0) = 0, g∗(1) ∈ (0, 1), with the latter being the only stable one.

This can be seen as follows. When cg ≤ p, the default action is the risky one and so

the payoff is learned when the value is 1, and g∗(1) = 1. If v = 0, agents who see another

high cost type either observe a negative payoff or the safe action taken - both of which

reveal that the state is 0. Thus, the only agents who take the risky action are those who

don’t see another high cost agent, and follow their prior. That happens with probability

g∗(0) = (1− πg)dg .
When cg > p, high cost agents only take the risky action if they see information that

causes them to update positively, which can only come from a high cost agent taking the

7If πg = dg = 1, then every g∗(1) ∈ [0, 1] is a steady state.
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action and getting a positive payoff. This implies that g∗(0) = 0, and also implies that

g∗(1) = 0 is always a steady state. The possibility of g∗(1) > 0 requires high enough

probability of observing other high cost agents. In that case, if there is some small ε of high

cost of types who take the risky action, then others learn from that. Given that πgdg > 1,

this converges upward as on average more see those. It does not converge to 1, as there

are also some who do not observe any high cost types, or observe those from the previous

generation who did not take the high action.

3.2 Partial Homophily

More interesting equilibria appear when there is interaction between the different groups, so

we now focuse on the case in which hθ ∈ (0, 1).

The cases in which cθ ≤ p or cθ > p for both groups are similar to the case above. The

only difference is that cross-observations, and different πθs, lead to different proportions of

blues and greens taking the risky actions. The equations are two dimensional variations of

the previous section, and we leave them for the interested reader to work out.

The interesting case is when the two groups have different default actions. Without loss

of generality take cg > p ≥ cb > 0. Thus, cg green agents have the safe action as their default

action, and only change to risky action if they receive information causing them to update

to a posterior belief with sufficiently high probability on v = 1, while cost cb agents take the

risky action as their default action. The latter fact helps learning. It also means that the

equilibria are interior in all cases in the sense that there are always some agents taking each

action, as there are agents who have priors who lead them to take the risky action with no

information and others who do not, and there is always a chance that an agent does not see

any high cost agents and so does not update.

Equilibria are complicated, however, as agents not only update when they see the payoff

to another high cost agent, but also when they observe a high cost agent who does not take

the risky action. Although equilibria cannot be solved for in closed form, we can deduce

comparative statics.

The most interesting comparative static captures the dual nature of homophily. Greens

are better off seeing the high cost-types who are most often taking the risky action, which

could be either greens or blues depending on the context.

Proposition 1 In any stable steady state, g∗(1) is increasing in hg if and only if πgg
∗(1) >

πbb
∗(1).

Thus, homophily either enhances or impedes learning depending on the equilibrium struc-

ture. πgg
∗(1) > πbb

∗(1) implies that the green high cost agents who take the risky action

are more plentiful than the corresponding blue agents, and thus connections to green agents

are more informative than blue agents. Proposition 1 follows from a standard argument

that dynamics are differentiable at a stable steady state and applying the implicit function

theorem for comparative statics.
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The proposition is not in terms of primitives, but in terms of equilibrium parameters.

In order to derive the comparative statics in terms of primitive parameters, we focus on a

specific case.

Throughout the rest of the section, we focus on equilibria with b∗(1) = 1. Thus, blues

prefer to take the risky action unless they see a negative signal. This holds for any cb below

some cutoff level. We also maintain the assumption that cg > p, which means that greens

only take the risky action if they see some evidence of it being the high value state.

In such settings, greens never take the risky action in state v = 0, and only take the

risky action in state v = 1 when seeing some high-cost agent taking the risky action. Blues

all take the risky action in the state v = 1. When v = 0 blue agents take the risky action if

they don’t see any blue agents with high cost, as a blue agent with high cost not taking the

action reveals that v = 0 as does one taking the action.8 The dynamics are thus:

gt(0) = 0, gt(1) = 1−
(

1−
[
hgπggt−1(1) + (1− hg)πb

])dg
,

bt(0) =

(
1− hbπb

)db
, bt(1) = 1.

These dynamics are decoupled. Greens learn from both greens and blues, but blues are

always taking the risky action in the high value state, and so that is a corner solution and

not interacting with green behavior, so gt(1) depends only on gt−1(1). Blues only learn from

blues as under b∗(1) = 1 they only modify their behavior in the low-value state and when

seeing someone take the risky action and failing, and greens are not taking the risky action.

These equations yield intuitive comparative statics in terms of primitives. For these

results we presume that πθ ∈ (0, 1). This simplifies the statements as it rules out corner

cases in which the inequalities are no longer strict, but the corner cases are easy to calculate.

Proposition 2 Consider a setting in which blues strictly prefer to take the risky action

unless they see a negative signal. Then, given any gt−1(1):

• bt(0) is decreasing in db and in πbhb,

• gt(1) is increasing in πg, πb and dg.
9

The same are true of the steady-state g∗(1), b∗(0) except that then g∗(1) is increasing in hg

if and only if πg > πb and dg > d̄ = log1−πb

[
πg−πb
πg

]
.

The statements about πθ and dθ follow from the facts that having more observations

(higher dθ) and more high cost types (higher πθ) leads to greater information. The remaining

statements are about the interaction of homophily. Blues never learn from greens, and so

that accounts for bt(0) being decreasing in hb.

8Given b∗(1) = 1, blues seeing high cost greens taking the safe action still prefer to take the risky action.
9If gt−1(1) = 0 then gt is independent of πg.
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The comparative static about hg shows that homophily can be either beneficial or harm-

ful. In particular, greens can learn both from blues and greens who take the risky action, and

so what is important is the relative fraction of each who are taking the high action. That

depends on the degrees, which is why we see dg > d̄. For high enough degree, greens get

many observations and so are likely to take the high action, and so that favors learning from

greens, to the extent that πg > πb. If instead πg ≤ πb, then seeing blues always dominates

seeing greens. In this case, green agents are not taking the risky action often, and increased

homophily among greens reduces their information about the risky action leading them to

herd to the safe action. This is the sample herding we referred to in the introduction.

Figure 1 illustrates this relationship and shows how the effect of degree is greater as

homophily is increased.

1 3 4 5

0.2

0.8

1

d

dg

πd
πs

g∗(1)

hg=0.5
hg=0.75
hg=0.9

Figure 1: Steady state level of green group agents taking risky action when πs = 0.6, πd = 0.3.
We show the plot for real values of dg but the actual values of dg are discrete.

4 Incidental Homophily and Assortativity in Costs

We now return to the general model with multiple values and costs. For the remainder of

the paper, assume that for any cost in the support there is a value in the support above and

below it. This ensures that the risky action should only sometimes be taken, for any cost.

Instead of just tracking homophily in blue-green types, we also allow homophily to depend

on costs. Thus, we now track an agent’s type as a pair (θ, c) ∈ {b, g} × IR. An agent with

type (θ, c) has a friend of type (θ′, c′) with probability hθ,c(θ
′, c′).
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4.1 Optimality of Perfect Cost Homophily

If the costs of two agents are too different from each other then one learns little from the

whether the other succeeds or fails at the risky action. Agents learn the most from observing

others with the same cost who take the risky action, regardless of whether they are green or

blue.

We say that there is perfect cost homophily if for each (θ, c) type, hθ,c(θ
′, c′) > 0 implies

that there are no values v in the support of the risky action between c′ and c.

We say that there is complete learning if α∗(c, θ, v) = 1 whenever c < v and α∗(c, θ, v) = 0

whenever c > v.

Proposition 3 shows that these two conditions are equivalent.

Proposition 3 Suppose that dg, db > 1. Complete learning is the unique stable steady state

if and only if there is perfect cost homophily.

4.2 Incidental Homophily and Assortativity Patterns

Next, we explore other implications of cost homophily. We show that homophily in one

dimension (costs) can lead to incidental homophily on another dimension (blue,green), even

when there is no homophily on that second dimension.

For the remainder, we take blue and greens to have the same cost supports and have

values in the value support between any two costs in the cost support.

Let us say that there is perfect cost homophily with no attention to green/blue if there

is perfect cost homophily and for every θ, c,

hθ,c(θ
′, c) =

λθ′ Prθ′(c)

λg Prg(c) + (1− λg) Prb(c)
.

As we show next, this not only implies homophily in blue green space, but that there

is heterogeneity in that homophily, and tha own-type links are assortative in blue/green

homophily. It also implies additional results as we state next.

We say that Prg(·) likelihood ratio dominates Prb(·) if Prg(c)

Prb(c)
is increasing in c on the

support.

Proposition 4 If Prg(·) 6= Prb(·) and there is perfect cost homophily with no attention to

blue/green, then there is average homophily in blue/green:
∑

c Prθ(c)hθ,c(θ, c) > λθ.

If additionally Prg(·) likelihood ratio dominates Prb(·), then homophily in blue/green is

monotonic in cost: hg,c(g, c) is increasing in c, and hb,c(b, c) is decreasing in c. Moreover,

there exists a threshold cost c̄ that determines homophily/heterophily in opposite ways across

groups: hg,c(g, c) > λg and hg,c(g, c) < λb whenever c > c̄, and the inequality is reversed if

c < c̄.

Figure 2 illustrates Proposition 4.
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Figure 2: Blue/green homophily as a function of cost when there perfect cost homophily with
no attention to green/blue and Fg likelihood ratio dominates Fb. The figure is for equal-sized
groups.

Proposition 4 shows that perfect homophily in costs with no attention to green/blue leads

to average homophily in greens and blues. That is, although the network is determined by

costs in a color-blind way, in the resulting network the greens are more relatively more likely

to be linked to greens and blues to blues. This only requires that the cost distribution differ

between the two groups.

Moreover, if the groups are ordered in terms of their costs, then homophily is assorta-

tive. Higher cost agents from a higher cost group are more homophilous (on blue/green)

while lower cost agents from the same group are less homophilous. Finally, green and blue

agents have opposite homophily/heterophily above and below a threshold cost c̄. This means

that cross group links (since they are based on cost) end up being negatively assortative:

homophilous greens connect with heterophilous blues and vice versa.

5 Concluding Remarks

The benefits of cost homophily only arise in the long run, approaching steady-state, and

otherwise it can be inhibiting, along the lines of Proposition 2. This suggests policies that

encourage cross-group (but cost-homophilistic) relationships when there are substantial dif-

ferences in risky-action choices by groups (e.g., consistent with Chetty et al. (2022a)), but

then encouraging pure cost-homophily once learning is occurring. More generally, policies

disseminating information about success rates by cost can be much more enlightening than
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simply providing success rates.

Finally, understanding incidental homophily seems important, given that homophily is

often measured with respect to some limited set of attributes, but might be generated by

others. This suggests a next step of expanding network formation models (e.g., Currarini,

Jackson, and Pin (2009, 2010)) to understand the interaction between different characteristic

dimensions (Zuckerman, 2022), and how those different attributes are distributed across the

various settings in which people make friendships (Chetty et al., 2022b).

6 Proofs

Proof of Proposition 2: The results on bt(0), gt(1) and b∗(0) follow directly from the

dynamic equations.

We analyze g∗(1), which solves

g = Γ(g) = 1−
(
1−

[
hgπgg + (1− hg)πb

])dg
.

Γ(g) is concave, nondecreasing, and continuous, with 1 > Γ(1) > Γ(0) > 0. Thus, a steady

state exists and is unique.

Comparative statics follow from implicit function theorem. We identify the threshold d̄

such that g∗(1) is increasing in hg if and only if dg > d̄.

If πg < πb, g
∗(1) is decreasing in hg for any dg— since πgg

∗ < πb for every g∗. Instead,

suppose πg ≥ πb. We take the natural-log of g = Γ(g) and rearrange to obtain dg as an

increasing function of the corresponding steady state g∗:

dg =
ln (1− g∗(1))

ln (1− hgπgg∗(1)− (1− hg)πb)
.

Let d̄ := log1−πb
πg−πb
πg

—the value of dg when g∗(1) = πb
πg
∈ (0, 1). Since dg is increasing

in g∗(1), we have dg > d̄ if and only if πgg
∗(1) > πb. Recall, g∗(1) is increasing in hg if

πgg
∗(1) > πb. We conclude g∗(1) is increasing in hg if dg > d̄.

Proof of Proposition 3: We first suppose there is perfect cost homophily and show the

unique stable steady state is complete learning.

Consider gt(c, v) = bt(c, v) = 1 and gt(c
′, v) = bt(c

′, v) = 0 for c′ > v > c. Next period,

cost c agents observe another cost c agent taking the risky action and learn v > c. Similarly,

cost c′ agents observe another taking the safe action. This reveals v < c′, as otherwise

observed agents would take the risky action. Thus, complete learning is a steady state.

We proceed by considering c < v and c′ > v separately and show stability and uniqueness.

First, we show complete learning is stable for c < v. Observing at least one cost c agent

taking the risky action fully reveals c < v. The fraction of cost c agents taking risky action
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is lower bounded by that probability:

gt+1(c, v) ≥ 1− (1− hggt(c, v)− (1− hg)bt(c, v))dg ≥ 1− (1−min{gt(c, v), bt(c, v)})dg (2)

bt+1(c, v) ≥ 1− (1−min{gt(c, v), bt(c, v)})db (3)

Every ε-perturbation of complete learning has min{bt(c, v), gt(c, v)} ≥ 1 − ε. Then

gt+1(c, v) ≥ 1− εdg > 1− ε = gt(c, v) if dg > 1. Thus, g∗(c, v) = b∗(c, v) = 1 is stable.

Second, we show if g∗(·, v) and b∗(·, v) is a stable steady state then g∗(c, v) = b∗(c, v) = 1

for v > c. Suppose not, there exists another stable steady state g′(·, v), b′(·, v).

Steady states solve (2) and (3). The only solution different than complete learning is

g′(c, v) = b′(c, v) = 0. However, it is not stable. Consider an ε-perturbation: gt(c, v) =

bt(c, v) =
√
ε. We have gt+1(c, v) = 1 − (1 − √ε)dg > √ε = gt(c, v) if dg > 1. Thus, every

stable steady state has g∗(c, v) = b∗(c, v) = 1.

Third, we show that if a steady state is stable then g(c′, v) = b(c′, v) = 0. There are two

possible signal profiles for cost c′ agents: (i) At least one negative signal about the risky

action, and (ii) No signals about the risky action. The former reveals c′ > v. The agent can

also infer c′ > v in the latter, since g(c, v) = b(c, v) = 1 whenever v > c at a stable steady

state.

Fourth, g∗(c′, v) = b∗(c′, v) = 0 is stable, as observing any signal fully reveals the state

for every g(·, v) and b(·, v) in an ε-neighborhood of complete learning.

These four points together show that complete learning is the unique stable steady state.

For the converse, we show complete learning at the steady state implies perfect cost ho-

mophily. The proof is by contrapositive. Consider a network without perfect cost homophily.

There exists type (θ, c) and (θ′, c′) agents such that (θ, c) agents observe (θ′, c′) with positive

probability, and there is a value v between c′ and c. We show that a steady state cannot

have complete learning.

Suppose c > v > c′. There is a positive measure of (θ, c) agents who observe only cost c′

agents taking risky action. If the posterior is above c, then there is incomplete learning. If

not, for v′ > c, there are (θ, c) agents who receive the same signal profile and have the same

posterior. So, they take the safe action. This contradicts complete learning.

Suppose instead that c′ > v > c. There are (θ, c) agents who observe only cost c′ taking

the safe action. If the posterior is below c, then complete learning fails. If not, for v′′ < c

there are type (θ, c) agents who receive the same signal profile and take the safe action. This

contradicts complete learning.

Proof of Proposition 4: We define two auxiliary vectors x and y: xc = Prθ(c)√
λθ Prθ(c)+(1−λθ) Prθ′ (c)

and yc =
√
λθ Prθ(c) + (1− λθ) Prθ′(c) for every c. Applying the Cauchy-Schwarz inequal-

ity: ∑
c

(
Prθ(c)

2

λθ Prθ(c) + (1− λθ) Prθ′(c)

)∑
c

(
λθPrθ(c) + (1− λθ)Prθ′(c)

)
≥
(∑

c

Prθ(c)

)2

.
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Multiplying both sides with λθ∑
c(λθPrθ(c)+(1−λθ)Prθ′ (c))

> 0:

∑
c

Prθ(c)hθ,c(θ, c) = λθ
∑
c

Prθ(c)
2

λθ Prθ(c) + (1− λθ) Prθ′(c)
≥ (

∑
c Prθ(c))

2∑
c

[
λθPrθ(c) + (1− λθ)Prθ′(c)

]λθ = λθ.

The Cauchy-Schwarz inequality holds with equality if and only if x and y are linearly

dependent, which requires ∃κ 6= 0 such that (1− λθκ) Prθ(c) = κ (1− λθ) Prθ′(c) at every c.

This is not possible if Prθ(·) 6= Prθ′(·).
We can write hθ,c(θ, c) =

λθ
Prθ(c)

Prθ′ (c)

λθ
Prθ(c)

Prθ′ (c)
+(1−λθ)

. It follows that hθ,c(θ, c) is increasing c if Prθ(c)
Prθ′ (c)

is increasing in c.

If Prθ(c
′)

Prθ′ (c
′)
> 1 then hθ,c′(θ, c

′) > λθ and λθ′ > hθ′,c′(θ
′, c′). Let c̄ be the smallest such c′. If

Prθ(c)
Prθ′ (c)

is increasing then the conclusion holds whenever c > c̄. The inequalities are reversed

if c < c̄.
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