Efficient Cheap Talk in Complex Environments

Yunus C. Aybas Stanford Economics Steven Callander Stanford GSB

February 5, 2024

- ► In practice, experts often have power over decision makers.
 - ▶ Division managers over the headquarters (Milgrom and Roberts, 1988),
 - ► Realtors over homeowners (Levitt and Syverson, 2008),
 - ► OBGYNs over patients (Gruber and Owings, 1996),
 - Congressional committees over the floor (Gilligan and Krehbiel, 1987).

- ► In practice, experts often have power over decision makers.
 - ▶ Division managers over the headquarters (Milgrom and Roberts, 1988),
 - ► Realtors over homeowners (Levitt and Syverson, 2008),
 - ► OBGYNs over patients (Gruber and Owings, 1996),
 - ► Congressional committees over the floor (Gilligan and Krehbiel, 1987).
- ▶ "The power position of an expert is always overtowering." Weber (1922)

- ▶ The economic models of expertise contrast with expertise in practice.
- ► Canonical cheap talk model of Crawford & Sobel (1982) has two key conclusions:

- ▶ The economic models of expertise contrast with expertise in practice.
- Canonical cheap talk model of Crawford & Sobel (1982) has two key conclusions:
 - 1. Communication is valuable, but it is necessarily inefficient.

- ▶ The economic models of expertise contrast with expertise in practice.
- Canonical cheap talk model of Crawford & Sobel (1982) has two key conclusions:
 - 1. Communication is valuable, but it is necessarily inefficient.
 - 2. The expert has no power outcome is decision maker's ideal in expectation.

- ► The economic models of expertise contrast with expertise in practice.
- Canonical cheap talk model of Crawford & Sobel (1982) has two key conclusions:
 - 1. Communication is valuable, but it is necessarily inefficient.
 - 2. The expert has no power outcome is decision maker's ideal in expectation.
- $\Rightarrow\,$ Expert would be better off if she can transfer her expertise to the decision maker.

- ► The economic models of expertise contrast with expertise in practice.
- Canonical cheap talk model of Crawford & Sobel (1982) has two key conclusions:
 - 1. Communication is valuable, but it is necessarily inefficient.
 - 2. The expert has no power outcome is decision maker's ideal in expectation.
- $\Rightarrow\,$ Expert would be better off if she can transfer her expertise to the decision maker.
- ▶ Enormous literature of applied models builds on Crawford and Sobel.

- ► The economic models of expertise contrast with expertise in practice.
- Canonical cheap talk model of Crawford & Sobel (1982) has two key conclusions:
 - 1. Communication is valuable, but it is necessarily inefficient.
 - 2. The expert has no power outcome is decision maker's ideal in expectation.
- $\Rightarrow\,$ Expert would be better off if she can transfer her expertise to the decision maker.
- ▶ Enormous literature of applied models builds on Crawford and Sobel.
- Mismatch between models and practice Why?

Treatment

► Crawford-Sobel: Relationship between treatments and outcomes is linear with known slope.

► Crawford-Sobel: Relationship between treatments and outcomes is linear with known slope.

• Crawford-Sobel: Relationship between treatments and outcomes is linear with known slope.

Physician reveals ideal treatment

► Crawford-Sobel: Relationship between treatments and outcomes is linear with known slope.

▶ Physician reveals ideal treatment → Patient inverts the mapping and learns own ideal treatment.

▶ Crawford-Sobel: Relationship between treatments and outcomes is linear with known slope.

- ▶ Physician reveals ideal treatment → Patient inverts the mapping and learns own ideal treatment.
- ▶ **Practice:** Relationship between treatments and outcomes is highly unknown and complex.

• Crawford-Sobel: Relationship between treatments and outcomes is linear with known slope.

- Physician reveals ideal treatment \rightarrow Patient inverts the mapping and learns own ideal treatment.
- ▶ Practice: Relationship between treatments and outcomes is highly unknown and complex.

• Crawford-Sobel: Relationship between treatments and outcomes is linear with known slope.

- ▶ Physician reveals ideal treatment → Patient inverts the mapping and learns own ideal treatment.
- ▶ Practice: Relationship between treatments and outcomes is highly unknown and complex.

• Crawford-Sobel: Relationship between treatments and outcomes is linear with known slope.

- Physician reveals ideal treatment \rightarrow Patient inverts the mapping and learns own ideal treatment.
- ▶ Practice: Relationship between treatments and outcomes is highly unknown and complex.
 - ▶ Physician reveals ideal treatment → Patient cannot invert the mapping and faces uncertainty.

▶ Strategic communication in complex environments where the relationship is non-invertible.

- ▶ Strategic communication in complex environments where the relationship is non-invertible.
- ▶ We model the mappings from actions to outcomes as paths of Brownian Motion.

- ▶ Strategic communication in complex environments where the relationship is non-invertible.
- ▶ We model the mappings from actions to outcomes as paths of Brownian Motion.
 - The expert knows the outcome of every action.
 - ► The decision maker knows the joint distribution of outcomes for each action.

- ▶ Strategic communication in complex environments where the relationship is non-invertible.
- ▶ We model the mappings from actions to outcomes as paths of Brownian Motion.
 - The expert knows the outcome of every action.
 - ► The decision maker knows the joint distribution of outcomes for each action.
- Equilibrium reverses the predictions of C-S:
 - 1. Communication is Pareto efficient.
 - 2. The expert has full power the equilibrium outcome is equivalent to full delegation.

Reconciling Theory with Practice

• We capture the decision making power of the expert.

- We capture the decision making power of the expert.
- ▶ This power comes purely from their informational advantage.

- We capture the decision making power of the expert.
- ▶ This power comes purely from their informational advantage. Is this the right explanation?

- We capture the decision making power of the expert.
- ► This power comes purely from their informational advantage. Is this the right explanation?
- "As a consequence of the information inequality, the patient must delegate to the physician much of his freedom of choice."
 Kenneth Arrow (1963, p.964)

- We capture the decision making power of the expert.
- ► This power comes purely from their informational advantage. Is this the right explanation?
- "As a consequence of the information inequality, the patient must delegate to the physician much of his freedom of choice."
 Kenneth Arrow (1963, p.964)
- ▶ Large information gaps are the source of expert power. (Weber, 1922; French and Raven, 1959).

- We capture the decision making power of the expert.
- ► This power comes purely from their informational advantage. Is this the right explanation?
- "As a consequence of the information inequality, the patient must delegate to the physician much of his freedom of choice."
 Kenneth Arrow (1963, p.964)
- ▶ Large information gaps are the source of expert power. (Weber, 1922; French and Raven, 1959).
- ▶ We show how large of an "information inequality" supports expert power by itself.

► Why Brownian Motion?

▶ Why Brownian Motion? It is a tractable model with attractive properties.

▶ Why Brownian Motion? It is a tractable model with attractive properties.

- Parameterize how much is learned from the expert's ideal action.
- ► Show how much learning is too much learning for supporting expert power.

- ▶ Why Brownian Motion? It is a tractable model with attractive properties.
 - ▶ Parameterize how much is learned from the expert's ideal action.
 - ► Show how much learning is too much learning for supporting expert power.
- ▶ Brownian Motion, and its special features, are not necessary for expert power.

- ▶ Why Brownian Motion? It is a tractable model with attractive properties.
 - ▶ Parameterize how much is learned from the expert's ideal action.
 - ► Show how much learning is too much learning for supporting expert power.
- ▶ Brownian Motion, and its special features, are not necessary for expert power.
- ▶ We provide examples of other environments and extract the essential ingredient for expert power.

- ▶ Why Brownian Motion? It is a tractable model with attractive properties.
 - ▶ Parameterize how much is learned from the expert's ideal action.
 - ► Show how much learning is too much learning for supporting expert power.
- ▶ Brownian Motion, and its special features, are not necessary for expert power.
- ▶ We provide examples of other environments and extract the essential ingredient for expert power.
- ► A large 'information inequality' is the essential ingredient for expert power.
 - ► Expert can reveal her most-preferred action without eliminating all uncertainty.

1. Brownian Motion Model.

2. Results

- Decision making without the Expert.
- ► Main Result: Decision making with the Expert.
- 3. Extensions: Brownian Motion and Beyond.

- ▶ **Players:** Sender (the expert) and receiver (the decision maker).
- Actions and Messages: $\mathcal{A} = [0, q]$ for $q \in \mathbb{R}$ and $r \in \mathcal{M}$.
- **Outcomes:** $\psi : \mathcal{A} \to \mathbb{R}$ maps actions to outcomes.
- **Preferences:** $u^{S}(a) = -(\psi(a) b)^{2}$ and $u^{R}(a) = -\psi(a)^{2}$.
 - Results hold for weakly concave $u^{R}(\cdot)$ and any $u^{S}(\cdot)$ maximized at *b*.

Solution Concept: Perfect Bayesian Equilibrium.

Formal Definitions

action

 $\blacktriangleright\,$ The mapping $\psi:\mathcal{A}\to\mathbb{R}$ is given by the path of a Brownian Motion.

Details of Complex Environments

• Expert knows the realized mapping.

 $\blacktriangleright\,$ The mapping $\psi:\mathcal{A}\to\mathbb{R}$ is given by the path of a Brownian Motion.

Details of Complex Environments

• The mapping $\psi : \mathcal{A} \to \mathbb{R}$ is given by the path of a Brownian Motion.

Details of Complex Environments

► Expert knows the realized mapping. Receiver does not know the realized mapping.

Receiver knows mapping is Brownian Motion

• Receiver knows mapping is Brownian Motion with parameters: ψ_0 ,

• Receiver knows mapping is Brownian Motion with parameters: ψ_0 , drift μ ,

• Receiver knows mapping is Brownian Motion with parameters: ψ_0 , drift μ , and scale σ .

- Receiver knows mapping is Brownian Motion with parameters: ψ_0 , drift μ , and scale σ .
- ► Receiver Beliefs: $\psi(a) \sim \mathcal{N}(\psi_0 + \mu a, \sigma^2 a)$ and $\operatorname{Cov}(\psi(a), \psi(a')) = \sigma^2 \min\{a, a'\}$.

- Receiver knows mapping is Brownian Motion with parameters: ψ_0 , drift μ , and scale σ .
- ► Receiver Beliefs: $\psi(a) \sim \mathcal{N}(\psi_0 + \mu a, \sigma^2 a)$ and $\operatorname{Cov}(\psi(a), \psi(a')) = \sigma^2 \min\{a, a'\}$.
- Learning one point in the mapping \neq Learning the whole mapping.

Simple v. Complex Environments

- ▶ Key Difference: How much the receiver learns from the expert's most preferred action.
- ▶ This is captured with the "informational inequality" about $\psi : \mathcal{A} \to \mathbb{R}$.

Simple v. Complex Environments

- ▶ Key Difference: How much the receiver learns from the expert's most preferred action.
- This is captured with the "informational inequality" about $\psi : \mathcal{A} \to \mathbb{R}$.
- ▶ Simple Environments: Relationship is known and outcomes are perfectly correlated.
 - $\psi(a) = \theta a$ where $\theta \in \mathbb{R}$ is the private information of the expert.

$$\psi(a) = b \Rightarrow \theta = b + a \Rightarrow \psi(a') = (b + a) - a'$$

Simple v. Complex Environments

- ► Key Difference: How much the receiver learns from the expert's most preferred action.
- This is captured with the "informational inequality" about $\psi : \mathcal{A} \to \mathbb{R}$.
- ▶ Simple Environments: Relationship is known and outcomes are perfectly correlated.

• $\psi(a) = \theta - a$ where $\theta \in \mathbb{R}$ is the private information of the expert.

$$\psi(a) = b \Rightarrow \theta = b + a \Rightarrow \psi(a') = (b + a) - a'$$

- ► Complex Environments: Relationship is unknown and outcomes are imperfectly correlated.
 - $\psi(\cdot)$ is a Brownian Motion with parameters μ and σ :

$$\psi(a) = b \Rightarrow \psi(a+x) \sim b + \mathcal{N}(\mu x, \sigma^2 x)$$

- 1. Brownian Motion Model.
- 2. Results
 - Decision making without the Expert.
 - ► Main Result: Decision making with the Expert.
- 3. Extensions: Brownian Motion and Beyond.

▶ Decisions without the expert involve a tradeoff between risk and return.

- Decisions without the expert involve a tradeoff between risk and return.
- a > 0 improves the outcome by μa (up until 0), but increases variance by $\sigma^2 a$.

- Decisions without the expert involve a tradeoff between risk and return.
- a > 0 improves the outcome by μa (up until 0), but increases variance by $\sigma^2 a$.
- We call half of this ratio $\alpha = \frac{\sigma^2}{2|\mu|}$ as the **risk complexity** of the environment.

Lemma 1: Without additional information, receiver picks a^{no} based on the risk complexity α and the status-quo outcome ψ_0 :

(i) If $\alpha < \psi_0$ receiver chooses a^{no} such that $\mathbb{E}[\psi(a^{no})] = \alpha$,

Lemma 1: Without additional information, receiver picks a^{no} based on the risk complexity α and the status-quo outcome ψ_0 :

(i) If α < ψ₀ receiver chooses a^{no} such that E[ψ (a^{no})] = α,
(ii) If α > ψ₀ then the receiver chooses a^{no} = 0.

1. The Model: Introducing Complex Environments.

2. Results

- Decision making without the Expert.
- ► Main Result: Decision making with the Expert.
- 3. Extensions: Brownian Motion and Beyond.

- We introduce the sender (expert) back into the game.
 - The sender observes the realized outcomes $\psi(\cdot)$ and recommends an action $r \in \mathcal{A}$.
 - The receiver observes the recommendation and makes a choice $a \in A$.

- We introduce the sender (expert) back into the game.
 - The sender observes the realized outcomes $\psi(\cdot)$ and recommends an action $r \in \mathcal{A}$.
 - The receiver observes the recommendation and makes a choice $a \in A$.
- ► How much power does the sender have over the final decision?
 - ▶ Full power if she can reveal her ideal action while keeping the receiver uncertain enough.

▶ **First-point strategy:** Sender recommends the <u>first</u> of her optimal actions.

$$m^*(\psi) := \min_{a \in [0,q]} \left\{ a : a \in rgmax_{a' \in \mathcal{A}} u^{\mathcal{S}}(a' \mid \psi)
ight\}.$$

▶ **First-point strategy:** Sender recommends the <u>first</u> of her optimal actions.

$$m^*(\psi) := \min_{a \in [0,q]} \left\{ a : a \in rgmax_{a' \in \mathcal{A}} u^{\mathcal{S}}(a' \mid \psi)
ight\}.$$

▶ First-point equilibria: Sender uses the first-point strategy and the receiver accepts it.

▶ **First-point strategy:** Sender recommends the <u>first</u> of her optimal actions.

$$m^*(\psi) := \min_{a \in [0,q]} \left\{ a : a \in rgmax_{a' \in \mathcal{A}} u^{\mathcal{S}}(a' \mid \psi)
ight\}.$$

- ▶ First-point equilibria: Sender uses the first-point strategy and the receiver accepts it.
 - ► Sender's incentive compatibility is immediate, the receiver's incentive compatibility is subtle...

▶ **First-point strategy:** Sender recommends the <u>first</u> of her optimal actions.

$$m^*(\psi) := \min_{a \in [0,q]} \left\{ a : a \in rgmax_{a' \in \mathcal{A}} u^{\mathcal{S}}(a' \mid \psi)
ight\}.$$

- ▶ First-point equilibria: Sender uses the first-point strategy and the receiver accepts it.
 - ► Sender's incentive compatibility is immediate, the receiver's incentive compatibility is subtle...
 - ▶ What does the the receiver learn from the recommendation about the path?

1. Event = b: Recommendation r^* has outcome $\psi(r^*) = b$.

Details for Event=b

1. Event = b: Recommendation r^* has outcome $\psi(r^*) = b$.

Details for Event=b

1. Event = b: Recommendation r^* has outcome $\psi(r^*) = b$.

Details for Event=b

▶ r^* is the <u>first-minimum</u>.

1. Event = b: Recommendation r^* has outcome $\psi(r^*) = b$.

- r^* is the <u>first-minimum</u>.
- ▶ No informational spillover to the right beyond $\psi(r^*) = b$ Beliefs are <u>neutral</u>.

2. Event > *b*: Set of paths where $\psi(r^*) > b$.

Details for Event>b

2. Event > *b*: Set of paths where $\psi(r^*) > b$.

Details for Event>b

2. Event > *b*: Set of paths where $\psi(r^*) > b$.

Details for Event>b

• r^* is the <u>first-minimum</u>.

2. Event > *b*: Set of paths where $\psi(r^*) > b$.

Details for Event>b

• r^* is the <u>first-minimum</u>. And r^* is also the <u>last-minimum</u>.

2. Event > *b*: Set of paths where $\psi(r^*) > b$.

Details for Event>b

- r^* is the <u>first-minimum</u>. And r^* is also the <u>last-minimum</u>.
- ▶ Beliefs to the right are not neutral Formally they follow a <u>Brownian Meander</u> process.

- ▶ Recommendation reveals precisely the sender's optimal action but imprecisely its outcome.
- ▶ Receiver forms posterior over these events using the Bayes' rule.
- A new identity: The joint distribution of the hitting time and the location of the minimum.

(i) The misalignment is small compared to the risk complexity:

If
$$0 < b < rac{\sigma^2}{2|\mu|} = lpha$$
 then $q_b^{\max} = \infty$.

(i) The misalignment is small compared to the risk complexity:

If
$$0 < b < rac{\sigma^2}{2|\mu|} = lpha$$
 then $q_b^{\max} = \infty.$

(ii) Or if the action space is not too large:

If
$$\psi_0 > b > rac{\sigma^2}{2|\mu|} = lpha$$
 then $q_b^{\max} \in \mathbb{R}_{++}$.

(i) The misalignment is small compared to the risk complexity:

$$\text{If } 0 < b < \frac{\sigma^2}{2|\mu|} = \alpha \text{ then } q_b^{\max} = \infty.$$

(ii) Or if the action space is not too large:

If
$$\psi_0 > b > rac{\sigma^2}{2|\mu|} = lpha$$
 then $q_b^{\max} \in \mathbb{R}_{++}$.

The Receiver's Optimal Response: $b \leq \alpha$

• Event $> b \implies$ Receiver and sender have aligned action preferences.

The Receiver's Optimal Response: $b \leq \alpha$

• Event $> b \implies$ Receiver and sender have aligned action preferences.

• Event = $b \implies$ Receiver and sender have misaligned action preferences.

The Receiver's Optimal Response: $b \leq \alpha$

• Event $> b \implies$ Receiver and sender have aligned action preferences.

- Event = $b \implies$ Receiver and sender have misaligned action preferences.
- ▶ Logic of the 'no expert' result applies for deviations to right of the recommendation.

(i) The misalignment is small compared to the risk complexity:

If
$$0 < b < rac{\sigma^2}{2|\mu|} = lpha$$
 then $q_b^{\max} = \infty.$

(ii) Or if the action space is not too large:

$$\text{If } \psi_0 > b > \frac{\sigma^2}{2|\mu|} = \alpha \text{ then } q_b^{\max} \in \mathbb{R}_{++}.$$

The Receiver's Optimal Response: $b > \alpha$

- For $b > \alpha$, the receiver faces a trade-off:
 - In Event >b the receiver's best response is $a = r^*$.
 - In Event =b the receiver's best response is a^* such that $\mathbb{E}[\psi(a^*)] = \alpha$.
- Efficient cheap talk requires the receiver to choose exactly r^* and nothing in between.

Before showing existence, we first explain how action space influences the receivers inference problem.

Lemma 2: If the first-point equilibrium exists for $\mathcal{A} = [0, q]$, then it exists for $\mathcal{A}' = [0, q']$ whenever q' < q.

• No paths are eliminated as $q \rightarrow q'$.

▶ Same first-minimum and weaker last-minimum requirement as $q \rightarrow q'$.

▶ No paths are eliminated as $q \rightarrow q'$. But paths are *added* to Event >b as $q \rightarrow q'$.

▶ Same first-minimum and weaker last-minimum requirement as $q \rightarrow q'$.

- No paths are eliminated as $q \rightarrow q'$. But paths are *added* to Event >b as $q \rightarrow q'$.
- \Rightarrow Probability of Event > b is decreasing in q.

Details of the Argument

Equilibrium Existence

• Lemma 3: The first-point equilibrium exists for some $\mathcal{A} = [0, q]$ with q > 0.

Equilibrium Existence

• If *q* is not too large, the probability of Event > b is greater than Event = b.

▶ Moreover, if *q* is not too large the Brownian Meander dominates in expectation.

Equilibrium Existence

- If *q* is not too large, the probability of Event > b is greater than Event = b.
- ▶ Moreover, if *q* is not too large the Brownian Meander dominates in expectation.
- ▶ Equilibrium does not rely on risk aversion, although it makes achieving it easier.

Theorem 1. The first-point equilibrium exists if and only if one of the following holds:

(i) Risk complexity is high and the expert's recommendation is very hard to invert.

$$b \leq rac{\sigma^2}{2|\mu|}$$

(ii) The action space is not too large and there is sufficient action alignment with the expert.

$$\mathcal{A} = [0,q] ext{ with } q \leq q_b^{ ext{max}}.$$

How does the size of largest action space q_b^{\max} change with the primitives of the environment?

How does the size of largest action space q_b^{max} change with the primitives of the environment?

- C1: q_b^{\max} is decreasing in *b* for $b > \alpha$.
 - Less likely to be 'aligned' (Event > b), and incremental gains are more attractive.

How does the size of largest action space q_b^{\max} change with the primitives of the environment?

- C1: q_b^{\max} is decreasing in *b* for $b > \alpha$.
 - Less likely to be 'aligned' (Event > b), and incremental gains are more attractive.

C2: q_b^{max} is increasing in μ .

• More likely to be 'aligned' (Event > b), and incremental gains are less attractive.

How does the size of largest action space q_b^{\max} change with the primitives of the environment?

- C1: q_b^{\max} is decreasing in *b* for $b > \alpha$.
 - Less likely to be 'aligned' (Event > b), and incremental gains are more attractive.
- C2: q_b^{\max} is increasing in μ .
 - ▶ More likely to be 'aligned' (Event > *b*), and incremental gains are less attractive.

Increased σ has conflicting effects.

Detailed effect of σ

• Our simulations suggests that q_b^{\max} is generally increasing in $\sigma > 0$.

We also look for comparative statics for welfare within the first-point equilibrium (valid for $q < q_b^{\max}$).

We also look for comparative statics for welfare within the first-point equilibrium (valid for $q < q_b^{\max}$).

- C3: Both players utility strictly increase in *q*.
 - Wider action space \Rightarrow Path more likely to cross $b \Rightarrow$ Both players better off.

We also look for comparative statics for welfare within the first-point equilibrium (valid for $q < q_b^{\max}$).

- C3: Both players utility strictly increase in q.
 - Wider action space \Rightarrow Path more likely to cross $b \Rightarrow$ Both players better off.

C4: Receiver utility strictly decreases and sender utility strictly increases in *b*.

• Larger bias \Rightarrow Path more likely to cross *b* & Equilibrium becomes worse for receiver ($\geq b$).

We also look for comparative statics for welfare within the first-point equilibrium (valid for $q < q_b^{\max}$).

- C3: Both players utility strictly increase in q.
 - Wider action space \Rightarrow Path more likely to cross $b \Rightarrow$ Both players better off.

C4: Receiver utility strictly decreases and sender utility strictly increases in *b*.

- Larger bias \Rightarrow Path more likely to cross *b* & Equilibrium becomes worse for receiver ($\ge b$).
- C5: Expected equilibrium outcome approaches to b as $\sigma \to \infty$.
 - Very complex issues \Rightarrow More likely to cross *b* & Receiver doesn't override \Rightarrow Both better off.

► Efficient equilibrium ⇒ Equilibrium action distribution have full support.

- $\blacktriangleright\,$ Efficient equilibrium \Rightarrow Equilibrium action distribution have full support.
 - If not, then an open set $S \subseteq A$ is omitted.
 - \Rightarrow Positive probability that the $\psi(\cdot)$ attains a minimum weakly above *b* at some $a \in S$.
 - $\Rightarrow~$ Recommending the minimum instead improves the payoff for both players.

- $\blacktriangleright\,$ Efficient equilibrium \Rightarrow Equilibrium action distribution have full support.
 - If not, then an open set $S \subseteq A$ is omitted.
 - \Rightarrow Positive probability that the $\psi(\cdot)$ attains a minimum weakly above *b* at some $a \in S$.
 - $\Rightarrow~$ Recommending the minimum instead improves the payoff for both players.
- ► Full support action distribution ⇒ Sender recommends own most preferred action.

1. The Model: Introducing Complex Environments.

2. Results

- Decision making without the Expert.
- ► Main Result: Decision making with the Expert.
- 3. Extensions: Brownian Motion and Beyond.

Delegating v. Communicating?

Question: Should the principal of an organization hire an expert to do a task or to get advice?

Delegating v. Communicating?

Question: Should the principal of an organization hire an expert to do a task or to get advice?

▶ Simple environments: There is a trade-off between information and control. (Dessein, 2002)

Delegating v. Communicating?

Question: Should the principal of an organization hire an expert to do a task or to get advice?

- ▶ Simple environments: There is a trade-off between information and control. (Dessein, 2002)
- **Complex environments:** If $q \leq q_b^{\max}$ they are equivalent either way control is lost.

Delegating v. Communicating?

Question: Should the principal of an organization hire an expert to do a task or to get advice?

- ▶ Simple environments: There is a trade-off between information and control. (Dessein, 2002)
- ▶ **Complex environments:** If $q \le q_b^{\max}$ they are equivalent either way control is lost.

Question: What if $q > q_b^{\max}$?

Delegating v. Communicating?

Question: Should the principal of an organization hire an expert to do a task or to get advice?

- ▶ Simple environments: There is a trade-off between information and control. (Dessein, 2002)
- ▶ **Complex environments:** If $q \le q_b^{\max}$ they are equivalent either way control is lost.

Question: What if $q > q_b^{\max}$?

• Receiver can commit to taking actions from $[0, q_h^{\max}]$ to facilitate efficient communication.

Delegating v. Communicating?

Question: Should the principal of an organization hire an expert to do a task or to get advice?

- ▶ Simple environments: There is a trade-off between information and control. (Dessein, 2002)
- ▶ **Complex environments:** If $q \le q_b^{\max}$ they are equivalent either way control is lost.

Question: What if $q > q_b^{\max}$?

- Receiver can commit to taking actions from $[0, q_b^{\max}]$ to facilitate efficient communication.
- ▶ But it is better for him to delegate full decision making power.
 - Restriction to $[0, q_b^{\max}]$ creates action-alignment by making both players worse off.

- ▶ Brownian Motion is a tractable setup to illustrate how experts derive power in practice.
- ▶ Sender optimal and efficient cheap talk can be supported in other environments.

- ▶ Brownian Motion is a tractable setup to illustrate how experts derive power in practice.
- ▶ Sender optimal and efficient cheap talk can be supported in other environments.
 - Action-alignment: The receiver and sender can have different ideal actions for every state.
 - ▶ Distribution: Joint distribution can be non-gaussian, non-markov or have dependent increments.
 - ► Action/State Space: Discrete, continuum, or higher dimensional. Also they can be isomorphic.

- ▶ Brownian Motion is a tractable setup to illustrate how experts derive power in practice.
- ▶ Sender optimal and efficient cheap talk can be supported in other environments.
 - Action-alignment: The receiver and sender can have different ideal actions for every state.
 - ▶ Distribution: Joint distribution can be non-gaussian, non-markov or have dependent increments.
 - ► Action/State Space: Discrete, continuum, or higher dimensional. Also they can be isomorphic.
- ▶ What is the common feature then?

- ▶ Brownian Motion is a tractable setup to illustrate how experts derive power in practice.
- ▶ Sender optimal and efficient cheap talk can be supported in other environments.
 - Action-alignment: The receiver and sender can have different ideal actions for every state.
 - ▶ Distribution: Joint distribution can be non-gaussian, non-markov or have dependent increments.
 - ► Action/State Space: Discrete, continuum, or higher dimensional. Also they can be isomorphic.
- ▶ What is the common feature then? Expert advice is non-invertible.

- ▶ Brownian Motion is a tractable setup to illustrate how experts derive power in practice.
- ▶ Sender optimal and efficient cheap talk can be supported in other environments.
 - Action-alignment: The receiver and sender can have different ideal actions for every state.
 - ▶ Distribution: Joint distribution can be non-gaussian, non-markov or have dependent increments.
 - ► Action/State Space: Discrete, continuum, or higher dimensional. Also they can be isomorphic.
- ▶ What is the common feature then? Expert advice is non-invertible.

Expert reveals her own optimal action \Rightarrow Decision maker learns his optimal action.

• Outcome Mapping: $\psi(a) = \psi_0 + a$ or $\psi(a) = \psi_0 - a$ with $\psi_0 \in \mathbb{R}$.

• Outcome Mapping: $\psi(a) = \psi_0 + a$ or $\psi(a) = \psi_0 - a$ with $\psi_0 \in \mathbb{R}$.

▶ Efficient equilibrium exists if and only if two states are *equally* likely.

▶ Outcome Mapping: $\psi(a) = \psi_0 + a$ or $\psi(a) = \psi_0 - a$ with $\psi_0 \in \mathbb{R}$.

- ▶ Efficient equilibrium exists if and only if two states are *equally* likely.
- Players always have different optimal actions.

• Outcome Mapping: $\psi(a) = \psi_0 + a$ or $\psi(a) = \psi_0 - a$ with $\psi_0 \in \mathbb{R}$.

- Efficient equilibrium exists if and only if two states are *equally* likely.
- ▶ Players always have different optimal actions. Receiver faces directional uncertainty.

Expert Advice in the Long-run

Question: How does the expert power change in long-run relationships?

Question: How does the expert power change in long-run relationships?

▶ Decision maker learns the relationship between actions and outcomes over time.

Question: How does the expert power change in long-run relationships?

- ▶ Decision maker learns the relationship between actions and outcomes over time.
- ► Expert can't use her information efficiently communicates inefficiently to keep the receiver uncertain.

Question: How does the expert power change in long-run relationships?

- ▶ Decision maker learns the relationship between actions and outcomes over time.
- ► Expert can't use her information efficiently communicates inefficiently to keep the receiver uncertain.
- Decision maker's ability to learn can make communication so inefficient that she becomes worse off compared to single-period efficient communication.

Literature Review

- ▶ Cheap Talk (Crawford and Sobel, 1982).
 - ▶ Invertible. Equilibrium: Expert sacrifices power to make recommendations non-invertible.
- Bayesian Persuasion (Kamenica and Gentzkow, 2011).
 - ► Commitment makes recommendation non-invertible. We get sender-optimal <u>without</u> commitment.
- ▶ Unknown bias (Morgan and Stocken, 2003).
 - ▶ Non-invertible, but low residual uncertainty ⇒ Equilibria are generally inefficient.
- ▶ Discrete and Independent Actions (Aghion and Tirole, 1997)
 - ► No informational spillover.
- ▶ Brownian Motion (Callander, 2008; Callander, Lambert, Matouschek, 2021; Dall'Ara, 2023).
 - ▶ We study non-invertibility broadly, and how sender can shape information spillover.

Conclusion

► In practice experts are "overtowering."

▶ In practice experts are "overtowering.' In models they have no power and communication is inefficient.

- ▶ In practice experts are "overtowering.' In models they have no power and communication is inefficient.
- ▶ We develop a novel and comprehensive framework that captures expert-power in practice.

- ▶ In practice experts are "overtowering.' In models they have no power and communication is inefficient.
- ▶ We develop a novel and comprehensive framework that captures expert-power in practice.
- ▶ When the decision maker faces large "information inequality" the canonical results are reversed:
 - 1. Experts have full power they can implement her optimal action in equilibrium.
 - 2. Communication is efficient.

- ▶ In practice experts are "overtowering.' In models they have no power and communication is inefficient.
- ▶ We develop a novel and comprehensive framework that captures expert-power in practice.
- ▶ When the decision maker faces large "information inequality" the canonical results are reversed:
 - 1. Experts have full power they can implement her optimal action in equilibrium.
 - 2. Communication is efficient.
- ► Expert power comes from how much information remains private after the recommendation.

Thank You!

Extra Slides

States and Beliefs

• $\psi: A \to \mathbb{R}$ and Ψ is the set of all ψ .

- It can be also thought as if $\psi(\cdot)$ is a known function of a random variable θ (with underlying probability triple $(\Omega, \mathcal{F}, \omega)$) privately observed by the sender.
- State is θ and state space is $\theta \in \Theta$.
- ▶ Receiver prior belief: $\omega(\cdot)$ over Θ
 - ▶ e.g. $\Theta = [0, 1]$ and ω is the uniform distribution.
 - e.g. $\theta = C[0, q]$ and ω is the Wiener measure.
- We refer to the induced beliefs about $\psi(\cdot)$ instead of ω .

We call $\omega(\cdot \mid \cdot), \mathit{a}(\cdot), \mathit{m}(\cdot)$ a Perfect Bayesian Equilibrium if

- 1. $\omega(\psi \mid r \in m(\psi))$ is obtained via Bayes' rule whenever possible,
- 2. $a(r) \in \arg \max_{a' \in \mathcal{A}} \mathbb{E}[u_R(a', \psi) \mid \omega(\psi \mid r \in m(\psi))]$ for every $r \in \mathcal{M}$,
- 3. $m(\psi) \in \arg \max_{r' \in \mathcal{M}} u_{\mathcal{S}}(a(r'), \psi)$ for every $\psi \in \Psi$.

▶ Players: Sender and Receiver.

ack to Simple Environments

- Actions: $\mathcal{A} = \mathbb{R}_+$.
- Outcomes: $\psi(a) = \theta a$ common knowledge
- Sender's private information: realized θ .
- Receiver's prior: $\theta \sim \mathcal{I} \subseteq \mathbb{R}_+$.

▶ Payoffs: $u^{S}(a) = -(\psi(a) - b)^{2} = -(\theta - a - b)^{2}$, $u^{R}(a) = -(\psi(a))^{2} = -(\theta - a)^{2}$.

Simple Environments: Equilibrium

- ▶ All equilibria are partitional: $m^*(\theta) = r_i$ if and only if $\theta_i \in [\theta_{i-1}, \theta_i]$.
- ► Sender incentive compatibility limits the number of partitions.
- ▶ If partitions are too small, types at the boundary are too close to each other.

Back to Simple Environments

Complex Environments

- ▶ Players: Sender and Receiver.
- Actions: $\mathcal{A} = \mathbb{R}_+$.
- Outcomes: $\psi(a) = \psi_0 + \mu a + \sigma W(a)$.
 - The parameters ψ_0, μ and σ common knowledge.
- Formally state is W(a) and state space is C[0, q].
- Sender's private information: The realized path $\psi(a)$.
- ▶ Receiver prior belief: $\omega(\cdot)$ over C[0, q] given by the Wiener measure.
 - We generally refer to the induced beliefs about $\psi(\cdot)$ instead of $W(\cdot)$.

Proof of Lemma 1

By the mean-variance representation of quadratic utility, the receiver's expected utility is:

$$\mathbb{E}[u_{R}(a)] = -\left[\psi\left(0\right) + \mu a\right]^{2} - \sigma^{2}a.$$

The first and second order conditions for optimality are:

$$egin{aligned} rac{d\mathbb{E}[u_R(a)]}{da} &= -2\mu\left[\psi\left(0
ight)+\mu a
ight]-\sigma^2,\ rac{d^2\mathbb{E}[u_R(a)]}{da^2} &= -2\mu^2 \leq 0. \end{aligned}$$

The result follows from the first order condition.

- ▶ We get a similar result for other weakly concave utility.
- $\blacktriangleright\,$ But α is no longer a constant threshold.

Back to No Expert

- We can define Event = b using the hitting "action" (time).
- First hitting action: $\tau(x) := \inf\{a \in [0, q] \mid \psi(a) = x\}.$
- Probability of the path first-hitting $b < \psi_0$:

$$\mathbb{P}(\text{Event} = b \text{ at } a) = \mathbb{P}(\tau(b) \in da) = \frac{\psi_0 - b}{\sigma a \sqrt{a}} \phi\left(\frac{\psi_0 - b + \mu a}{\sigma \sqrt{a}}\right) da \quad \forall x \in \mathbb{R}_+$$

Back to Event=b

Probabilities of Event > b

- ► First hitting action: $\tau(x) := \inf\{a \in [0, q] \mid \psi(a) = x\}.$
- Minimum of the path $\iota(w, x)$: $\iota(w, x) = \inf{\{\psi(a) \mid a \in [w, x]\}}$.
- $\mathbb{P}(\text{Event} > b \text{ at } m^*(\psi) = r^*) = \int_b^{\psi_0} \mathbb{P}(\tau(y) \in dr^*, \iota(q) \in dy) dy.$

Probabilities of Event > b

- ► First hitting action: $\tau(x) := \inf\{a \in [0, q] \mid \psi(a) = x\}.$
- Minimum of the path $\iota(w, x)$: $\iota(w, x) = \inf{\{\psi(a) \mid a \in [w, x]\}}$.
- $\mathbb{P}(\text{Event} > b \text{ at } m^*(\psi) = r^*) = \int_b^{\psi_0} \mathbb{P}(\tau(y) \in dr^*, \iota(q) \in dy) dy.$
- ▶ Using the Strong Markov Property of *W*(*a*):

Bayes Updating

• We are interested in $\mathbb{P}(\text{Event} = \mathbf{b} \mid m^*(\psi) = r^*)$.

Back to Receiver's Inference

- ▶ Conditioning event $m^*(\psi) \in dr^*$ is the (disjoint) union of two events:
 - 1. Event =b at $m^*(\psi)$,
 - 2. Event>b at $m^*(\psi)$.
- ▶ Regular conditional probability can be obtained as follows:

$$\begin{split} \mathbb{P}(\text{Event} = \mathbf{b} \mid m^*(\psi) = r^*) &= \frac{\mathbb{P}(\text{Event} = \mathbf{b} \text{ at } m^*(\psi) \in dr^*)}{\mathbb{P}(m^*(\psi) = r^*)} \\ &= \frac{\mathbb{P}(\text{Event} = \mathbf{b} \text{ at } m^*(\psi) \in dr^*)}{\mathbb{P}(\text{Event} = \mathbf{b} \text{ at } m^*(\psi) \in dr^*) + \mathbb{P}(\text{Event} > \mathbf{b} \text{ at } m^*(\psi) \in dr^*)} \\ &= \frac{\mathbb{P}(\tau(b) \in dr^*)}{\mathbb{P}(\tau(b) \in dr^*) + \int_b^{\psi_0} \mathbb{P}(\tau(y) \in dr^*) \mathbb{P}(\iota(r^*, q) \in dy) dy} \end{split}$$

▶ Densities are well defined everywhere $r^* \in (0, q]$.

Brownian Motion: Conditional Beliefs

• The beliefs conditional on $\psi(r^*) = y$ are:

Back to Complex Environments 📜 Back to Inference

$$\mathbb{E}[\psi(a)|\psi(r^*) = y] = \begin{cases} \psi_0 + \frac{a}{r^*}(y - \psi_0) & \text{if } a \le r^* \\ y + \mu a & \text{if } a \ge r^* \end{cases}$$
$$\operatorname{Var}[\psi(a)|\psi(r^*) = y] = \begin{cases} \sigma^2 \frac{a(r^* - a)}{r^*} & \text{if } a \le r^* \\ \sigma^2(a - r^*) & \text{if } a \ge r^* \end{cases}$$

Brownian Meander I

• Rescale such that $X(a) = \psi(a) - \psi_0 = \mu a + \sigma W(a)$.

$$\mathbb{P}(X(a) \in dx \mid \iota(q) \ge -y) = \frac{\mathbb{P}(X(a) \in dx, \iota(q) \ge -y)}{\mathbb{P}(\iota(q) \ge -y)}$$
$$= \frac{\mathbb{P}(X(a) \in dx, \iota(a) \ge -y, \iota(q-a) \ge -(x+y))}{\mathbb{P}(\iota(q) \ge -y)}$$
$$\mathbb{P}(X(a) \in dx \mid \iota(q) \ge -y) = \frac{\mathbb{P}(X(a) \in dx, \iota(a) \ge -y)\mathbb{P}(\iota(q-a) \ge -(x+y))}{\mathbb{P}(\iota(q) \ge -y)}.$$

Brownian Meander II

- ▶ Details of the weak convergence follows from standard arguments.
- ▶ See Durrett et al. (1977) and Iafrate and Orsingher (2020) for the details.

Brownian Meander II

- It coincides with equation (1.4) in Iafrate and Orsingher (2020) when $\sigma = 1$.
- It coincides with Rayleigh distribution whenever $\mu = 0$, $\sigma = 1$ and a = q.

Moments of Brownian Meander

• We characterize the distribution of M(a, q) given its terminal value.

Back to Existence

- Special case of $\mu = 0$ and $\sigma = 1$ is analyzed in Devroye (2010) and Riedel (2021).
- ▶ This is obtained by the limit: $\lim_{-y\to 0^-} \mathbb{P}(X(a) \in dx \mid X(q) = c, \iota(q) \ge -y)$:

$$\mathbb{P}(M(a,q) \in dx \mid M(q,q) = c) = \frac{xq\sqrt{q}}{ca\sqrt{a}\sqrt{q-a}\sigma} \left[\phi\left(\frac{x - \frac{ca}{q}}{\sqrt{\frac{a}{q}}\sqrt{q-a}\sigma}\right) - \phi\left(\frac{x + \frac{ca}{q}}{\sqrt{\frac{a}{q}}\sqrt{q-a}\sigma}\right) \right] dx$$

$$\begin{split} \mathbb{E}[M(a,q)|M(q,q)=c] &= \frac{\sigma^2(q-a) + \frac{c^2 a}{q}}{c} \operatorname{erf}\left(\frac{c\sqrt{a}}{\sigma\sqrt{2q(q-a)}}\right) + \exp\left(\frac{-c^2 a}{2q(q-a)\sigma^2}\right) \sqrt{\frac{2a(q-a)}{q\pi}}\sigma\\ \mathbb{E}[M^2(a,q) \mid M(q,q)=c] &= \frac{3(q-a)a}{q}\sigma^2 + \frac{c^2 a^2}{q^2} \end{split}$$

▶ It follows that $\lim_{a\to 0^+} \frac{\partial}{\partial a} \mathbb{E}[M(a,q)|M(q,q)=c] = \infty$.

Equilibrium Dominance

- ► First hitting action: $\tau(x) := \inf\{a \in [0, q] \mid \psi(a) = x\}.$
- Minimum of the path $\iota(w, x)$: $\iota(w, x) = \inf{\{\psi(a) \mid a \in [w, x]\}}$.
- We have the probabilities given by:

$$\mathbb{P}(\text{Event} = b \text{ at } r^*) = \mathbb{P}(\tau(b) \in dr^*)) = \frac{\psi_0 - b}{\sigma r^* \sqrt{r^*}} \phi\left(\frac{\psi_0 - b + \mu r^*}{\sigma \sqrt{r^*}}\right) dr^* \quad \forall x \in \mathbb{R}_+$$

$$\mathbb{P}(\text{Event} > \text{b at } r^*) = \int_b^{\psi(0)} \underbrace{\mathbb{P}\{\tau(y) \in dr^*\}}_{\text{first-minimum}} \cdot \underbrace{\mathbb{P}\{\iota(r^*, q) \in dy\}}_{\text{last-minimum}} dy. \mathbb{P}\{\iota(r^*, q) \in dy\}$$

- As q gets smaller, $\tau(b) \in dr^*$ is constant and $\mathbb{P}\{\iota(r^*, q) \in dy\}$ is increasing.
- Thus, $\mathbb{P}(\text{Event} = \mathbf{b} \mid m^*(\psi) \text{ decreasing:}$

 $\mathbb{P}(\text{Event} = b \mid m^*(\psi) = r^*) = \frac{\mathbb{P}(\text{Event} = b \text{ at } m^*(\psi) \in dr^*)}{\mathbb{P}(\text{Event} = b \text{ at } m^*(\psi) \in dr^*) + \mathbb{P}(\text{Event} > b \text{ at } m^*(\psi) \in dr^*)}.$

Equilibrium Existence

Change in **expected outcome** for a deviation to $r^* + a'$ is given by:

 $\Delta(a', r^*, q) = \mathbb{P}(\text{Event} = \mathbf{b} \mid m^*(\psi) = r^*)(\mu a') + \mathbb{P}(\text{Event} > \mathbf{b} \mid m^*(\psi) = r^*)\mathbb{E}[M(a', q - r^*)]$

- 1. We showed that $\mathbb{P}(\text{Event} = \mathbf{b} \mid m^*(\psi) = r^*)$ decreasing.
- 2. Moreover, $\mathbb{P}(\text{Event} = \mathbf{b} \mid m^*(\psi) = r^*) \to 1$ for every as $r^* \to 0$.
- 3. We show that $\lim_{a\to 0^+} \frac{\partial}{\partial a} \mathbb{E}[M(a,q)|M(q,q)=c] = \infty$ for every q^* .
- ▶ If $q \to 0$, then $\max\{a, r^*\} \to 0$. So $\lim_{q\to 0} \Delta(a', r^*, q) > 0$
- ▶ Thus, for some $\bar{q} > 0$ we have that $\Delta(a', r^*, \bar{q})$ for every $a', r^*, q < \bar{q}$.
- Note that $\bar{q} \neq q_{\text{max}}^b$: q_{max}^b is the largest solution q is the counterpart for **expected payoff**.

Action Space v. Complexity

- We develop our analysis by varying the size of the action space instead of σ or α . Back to Size of the Action Space
- Expert derives power from the complexity of the environment but not in direct proportion to complexity.
- Increased σ has conflicting effects.
- 1. Changes what the receiver infers from the recommendation
 - ▶ Probability of Event= *b* is non-monotone, and increasing on average.
 - Makes it harder to support the equilibrium.
- 2. Changes the shape of receiver uncertainty about other actions.
 - Expectations for deviations in Event > *b* becomes more steep.
 - ► Riskiness of deviations increase in both events.
 - Makes it easier to sustain.
- ▶ Drift μ closer to 0 also decreases the probability of Event > b.
 - Equilibrium is always easier to support.

Extensions: Robustness within BM

Extensions within Brownian Motion

▶ Weakly concave utility with an unique maximum.

- ▶ The α threshold is not a constant Everything else goes through.
- Very large bias: $b > \psi_0$.
 - ► Interests are diametrically opposed, only equilibria are babbling.
- Negative Bias: b < 0.
 - In event = b, receiver knows there is an action to the left that gives his ideal.
- Actions to the left of the status quo.
 - $\blacktriangleright\,$ Recommendations to the left of status quo are easier to implement due to $\mu <$ 0.

Demonstration of Large Bias

Demonstration of Negative Bias

Demonstration of Actions to the Left

Sketch of the Idea

Say that the receiver's utility is separable in mean $\mu(a) = \mathbb{E}[\psi(a)]$ and variance $\sigma(a) = \operatorname{Var}[\psi(a)]$:

$$\mathbb{E}[u_R(a)] = v(\mu(a)) - w(\sigma(a)).$$

The first and second order conditions for optimality are:

$$\begin{aligned} \frac{d\mathbb{E}[u_{R}(a)]}{da} &= \mu'(a)\nu'(\mu(a)) - \sigma'(a)w(\sigma(a)) = 0\\ \frac{d^{2}\mathbb{E}[u_{R}(a)]}{da^{2}}\mu''(a)\nu'(\mu(a)) + \mu'(a)^{2}\nu''(\mu(a)) - \sigma''(a)w'(\sigma(a)) - \sigma'(x)^{2}w''(\sigma(x)) \le 0\\ a &= \mu^{-1}\left((\nu')^{-1}\left(\frac{\sigma'(a)\nu'(\sigma(a))}{\mu'(a)}\right)\right)\end{aligned}$$

The result follows from the first order condition under suitable conditions on the curvature of $\mu(a)$ and $\sigma(a)$. e.g. $\mu'(x) < 0$, $\mu''(x) \le 0$ and $\sigma'(x) > 0$, $\sigma''(x) > 0$ and w''(x), $v''(x) \le 0$

Very Large Bias

► Interests are fully misaligned.

- ▶ If an outcome is better than the status quo for the sender is worse for the receiver.
- Only equilibria are babbling.

Negative Bias

► Event > 0 works the same way.

Negative Bias

• In Event \leq 0, now there is a profitable deviation is now to the left.

Negative Bias

► Event > 0 works the same way.

- In Event \leq 0, now there is a profitable deviation is now to the left.
- A similar upper bound like q_{\max}^b can be constructed.

• If the recommendation is $r^* > 0$:

• If the recommendation is $r^* > 0$: It is the same problem and q_{\max}^b works.

• If the recommendation is $r^* > 0$: It is the same problem and q_{\max}^b works.

Back to Extensions

• If the recommendation is $r^* < 0$:

- If the recommendation is $r^* > 0$: It is the same problem and q_{\max}^b works.
- If the recommendation is $r^* < 0$:
- Drift μ has the opposite effect and the Receiver IC is always satisfied when r^* .

Extensions: Examples Beyond BM

Suppose that the sender uses $m: \psi \to A$ that *precisely reveals* his optimal action.

Suppose that the sender uses $m: \psi \to A$ that *precisely reveals* his optimal action.

▶ Under what conditions does communication imperfectly reveal the state?

Suppose that the sender uses $m: \psi \to A$ that *precisely reveals* his optimal action.

- ▶ Under what conditions does communication imperfectly reveal the state?
 - 1. Partial Invertibility: Multiple states are consistent with recommendation.

 $|m^{-1}(r)| > 1 \quad \forall r \in \mathcal{A}$

Suppose that the sender uses $m: \psi \to A$ that *precisely reveals* his optimal action.

- ▶ Under what conditions does communication imperfectly reveal the state?
 - 1. Partial Invertibility: Multiple states are consistent with recommendation.

 $|m^{-1}(r)| > 1 \quad \forall r \in \mathcal{A}$

▶ When is the receiver has uncertainty have about his best response?

Suppose that the sender uses $m: \psi \to A$ that *precisely reveals* his optimal action.

- ▶ Under what conditions does communication imperfectly reveal the state?
 - 1. Partial Invertibility: Multiple states are consistent with recommendation.

 $|m^{-1}(r)| > 1 \quad \forall r \in \mathcal{A}$

- ▶ When is the receiver has uncertainty have about his best response?
 - 2. **Response Uncertainty:** Receiver has distinct best responses to those states.

$$\bigcap_{\psi' \in m^{-1}(r)} \arg \max_{a \in \mathcal{A}} u^{R}(a, \psi') = \emptyset \quad \forall r \in \mathcal{A}$$

Suppose that the sender uses $m: \psi \to A$ that *precisely reveals* his optimal action.

- ▶ Under what conditions does communication imperfectly reveal the state?
 - 1. Partial Invertibility: Multiple states are consistent with recommendation.

 $|m^{-1}(r)| > 1 \quad \forall r \in \mathcal{A}$

- ▶ When is the receiver has uncertainty have about his best response?
 - 2. **Response Uncertainty:** Receiver has distinct best responses to those states.

$$\bigcap_{\psi' \in m^{-1}(r)} \arg \max_{a \in \mathcal{A}} u^{R}(a, \psi') = \emptyset \quad \forall r \in \mathcal{A}$$

Suppose that the sender uses $m: \psi \to A$ that *precisely reveals* his optimal action.

- ▶ Under what conditions does communication imperfectly reveal the state?
 - 1. Partial Invertibility: Multiple states are consistent with recommendation.

 $|m^{-1}(r)| > 1 \quad \forall r \in \mathcal{A}$

- ▶ When is the receiver has uncertainty have about his best response?
 - 2. Response Uncertainty: Receiver has distinct best responses to those states.

$$\bigcap_{\psi' \in m^{-1}(r)} \arg \max_{a \in \mathcal{A}} u^{R}(a, \psi') = \emptyset \quad \forall r \in \mathcal{A}$$

▶ When does that lead the receiver to accept the sender's optimal action?

Suppose that the sender uses $m: \psi \to A$ that *precisely reveals* his optimal action.

- ▶ Under what conditions does communication imperfectly reveal the state?
 - 1. Partial Invertibility: Multiple states are consistent with recommendation.

 $|m^{-1}(r)| > 1 \quad \forall r \in \mathcal{A}$

- ▶ When is the receiver has uncertainty have about his best response?
 - 2. Response Uncertainty: Receiver has distinct best responses to those states.

$$\bigcap_{\psi' \in m^{-1}(r)} \arg \max_{a \in \mathcal{A}} u^{R}(a, \psi') = \emptyset \quad \forall r \in \mathcal{A}$$

- ▶ When does that lead the receiver to accept the sender's optimal action?
 - 3. Recommendation Acceptance: Receiver's incentive compatibility is satisfied.

$$r \in rg\max_{a \in \mathcal{A}} \mathbb{E}[u^{R}(a, \psi) \mid \psi \in m^{-1}(r)] \quad \forall r \in m^{-1}(\Psi)$$

- 1. Partial Invertibility: Multiple states are consistent with recommendation.
- 2. Response Uncertainty: Receiver has distinct best responses to those states.
- 3. Recommendation Acceptance: Receiver's incentive compatibility is satisfied.

- 1. Partial Invertibility: Multiple states are consistent with recommendation.
- 2. Response Uncertainty: Receiver has distinct best responses to those states.
- 3. Recommendation Acceptance: Receiver's incentive compatibility is satisfied.
- ▶ First-point strategy in Brownian Motion environment satisfies (1) and (2).
- First-point strategy also satisfies (3) if action space is narrow $(q < q_{\max}^b)$.

- 1. Partial Invertibility: Multiple states are consistent with recommendation.
- 2. Response Uncertainty: Receiver has distinct best responses to those states.
- 3. Recommendation Acceptance: Receiver's incentive compatibility is satisfied.
- ▶ First-point strategy in Brownian Motion environment satisfies (1) and (2).
- First-point strategy also satisfies (3) if action space is narrow $(q < q_{\max}^b)$.
- ▶ Efficient strategies in unknown bias models satisfy (1) and (2) but fail (3).

- 1. Partial Invertibility: Multiple states are consistent with recommendation.
- 2. Response Uncertainty: Receiver has distinct best responses to those states.
- 3. Recommendation Acceptance: Receiver's incentive compatibility is satisfied.
- ▶ First-point strategy in Brownian Motion environment satisfies (1) and (2).
- First-point strategy also satisfies (3) if action space is narrow $(q < q_{\max}^b)$.
- ▶ Efficient strategies in unknown bias models satisfy (1) and (2) but fail (3).
- Efficient strategies in canonical cheap talk fail (1).

- 1. Partial Invertibility: Multiple states are consistent with recommendation.
- 2. Response Uncertainty: Receiver has distinct best responses to those states.
- 3. Recommendation Acceptance: Receiver's incentive compatibility is satisfied.
- ▶ First-point strategy in Brownian Motion environment satisfies (1) and (2).
- First-point strategy also satisfies (3) if action space is narrow $(q < q_{\max}^b)$.
- ▶ Efficient strategies in unknown bias models satisfy (1) and (2) but fail (3).
- Efficient strategies in canonical cheap talk fail (1).
- ▶ **Partition strategies** in canonical cheap talk satisfy (1) and (2).
- ▶ **Partition strategies** also satisfy (3) if partitions are large enough.

Misalignment Without Directional Uncertainty

• For each $a \in \mathcal{A} = \mathbb{Z}$, there are two states ψ and ψ' :

•
$$\psi(a) = b, \psi(a+1) = 0 \text{ and } \psi(a') = 100b \quad \forall a' \in \mathcal{A} \setminus \{a, a+1\}.$$

Misalignment Without Directional Uncertainty

• For each $a \in \mathcal{A} = \mathbb{Z}$, there are two states ψ and ψ' :

•
$$\psi(a) = b, \psi(a+1) = 0 \text{ and } \psi(a') = 100b \ \forall a' \in \mathcal{A} \setminus \{a, a+1\}.$$

• $\psi'(a) = b, \psi'(a+2) = 0$ and $\psi'(a') = 100b \quad \forall a' \in \mathcal{A} \setminus \{a, a+2\}.$

Misalignment Without Directional Uncertainty

• For each $a \in \mathcal{A} = \mathbb{Z}$, there are two states ψ and ψ' :

- $\psi(a) = b, \psi(a+1) = 0 \text{ and } \psi(a') = 100b \quad \forall a' \in \mathcal{A} \setminus \{a, a+1\}.$
- ► $\psi'(a) = b, \psi'(a+2) = 0$ and $\psi'(a') = 100b \quad \forall a' \in \mathcal{A} \setminus \{a, a+2\}.$
- Efficient equilibrium exists if neither states dominate for any action.
- Receiver is never aligned with the sender *and* has no directional uncertainty.

Orstein-Uhlenbeck: Mean-Reversion

• The mapping is Ornstein-Uhlenbeck mean-reverting to $\psi(0)$.

Details of OU process

- Expected outcome always points toward $\psi(0)$.
- First-point equilibrium exists $\forall b \in [0, \psi(0))$ and $\forall q \in \mathbb{R}$.

Wiener State Space: Mean Reversion

• $\psi(a)$ is the solution to the stochastic differential equation:

$$d\psi(a) = -\kappa \left(\psi(0) - \psi(a)\right) da + \sigma dW(a)$$

- $\blacktriangleright\ \kappa$ is the mean-reversion coefficient, and σ is the volatility term.
- Environment has the same state space as the Brownian environment.
- ▶ Differs in how the states are translated into outcomes via the outcome mappings.
- ▶ Deviations to *a* < *r*^{*} are worse for the receiver by the continuity of OU process.
- ► For deviations *a* > *r*^{*}:

$$\mathbb{E}[\psi(a) \mid m^{*}(\psi) = r^{*}] = \psi(0) - (\psi(0) - \psi(r^{*})) \underbrace{\exp(-\kappa(a - r^{*}))}_{<1}$$

$$Var(\psi(a) \mid m^{*}(\psi) = r^{*}) = \frac{\sigma^{2}}{2\kappa} (1 - \exp[-2\kappa(a - r^{*})])$$

Wiener State Space: Non-Markovian

We can think of fractional BM as keeping the drift same and redefining the Cov (ψ(a), ψ(a')) by:

$$\sigma^{2} \frac{1}{2} \left(|a|^{2H} + |a'|^{2H} - |a - a'|^{2H} \right)$$

- H is the Hurst index describes the raggedness of the resultant motion:
 - If H = 0.5 then the state is Wiener process;
 - ► If *H* > 0.5 then the increments of the process are positively correlated;
 - ► If *H* < 0.5 then the increments of the process are negatively correlated.
- H changes the shape of the variance: Linear, Convex or Concave.

$$H = 0.1$$

Wiener State Space: Non-Gaussian

▶ ψ(a) is geometric Brownian Motion, which is the solution to the differential equation:

 $d\psi(a) = \mu\psi(a)dt + \sigma\psi(a)dW(a).$

► The solution is given by:

$$\psi(a) = \psi_0 \exp\left(\left(\mu - \frac{\sigma^2}{2}\right)t + \sigma W(a)\right).$$

• $\psi(a)$ is log-normally distributed with:

$$\mathbb{E}[\psi(a)] = [\psi_0 \exp(\mu a)]$$
$$\operatorname{Var}(\psi(a)) = \psi_0^2 \exp(2\mu a) \left(\exp(\sigma^2 a) - 1\right)$$

Back to Extensions

Geometric Brownian Motion trajectories

Wiener State Space: Discontinuous

• $\psi(a)$ = Wiener process W(a) + compound Poisson process Y(a):

 $\psi(a) = \mu t + \sigma W(a) + Y(a)$

• If $Y(a) \ge 0$, then our techniques based on first hitting times directly apply.

Wiener State Space: Higher Dimensions

Figure: Brownian Sheet $\psi : X \times Y \to \mathbb{R}$.

Wiener State Space: More Knowledge

► Consider the Brownian Motion environment.

Back to Extensions

▶ But, the receiver begins knowing a second point action *q* where $\psi(q) \ge \psi(0)$.

Wiener State Space: More Knowledge

- ► Consider the Brownian Motion environment.
- ▶ But, the receiver begins knowing a second point action *q* where $\psi(q) \ge \psi(0)$.
- Similar to the OU process
- Easy to satisfy the first-point equilibrium.