Efficient Cheap Talk in Complex Environments

Yunus C. Aybas
Stanford Economics

Steven Callander
Stanford GSB

February 5, 2024

Expertise in Practice

- In practice, experts often have power over decision makers.
- Division managers over the headquarters (Milgrom and Roberts, 1988),
- Realtors over homeowners (Levitt and Syverson, 2008),
- OBGYNs over patients (Gruber and Owings, 1996),
- Congressional committees over the floor (Gilligan and Krehbiel, 1987).

Expertise in Practice

- In practice, experts often have power over decision makers.
- Division managers over the headquarters (Milgrom and Roberts, 1988),
- Realtors over homeowners (Levitt and Syverson, 2008),
- OBGYNs over patients (Gruber and Owings, 1996),
- Congressional committees over the floor (Gilligan and Krehbiel, 1987).
-"The power position of an expert is always overtowering." - Weber (1922)

Expertise in Models

- The economic models of expertise contrast with expertise in practice.
- Canonical cheap talk model of Crawford \& Sobel (1982) has two key conclusions:

Expertise in Models

- The economic models of expertise contrast with expertise in practice.
- Canonical cheap talk model of Crawford \& Sobel (1982) has two key conclusions:

1. Communication is valuable, but it is necessarily inefficient.

Expertise in Models

- The economic models of expertise contrast with expertise in practice.
- Canonical cheap talk model of Crawford \& Sobel (1982) has two key conclusions:

1. Communication is valuable, but it is necessarily inefficient.
2. The expert has no power - outcome is decision maker's ideal in expectation.

Expertise in Models

- The economic models of expertise contrast with expertise in practice.
- Canonical cheap talk model of Crawford \& Sobel (1982) has two key conclusions:

1. Communication is valuable, but it is necessarily inefficient.
2. The expert has no power - outcome is decision maker's ideal in expectation.
\Rightarrow Expert would be better off if she can transfer her expertise to the decision maker.

Expertise in Models

- The economic models of expertise contrast with expertise in practice.
- Canonical cheap talk model of Crawford \& Sobel (1982) has two key conclusions:

1. Communication is valuable, but it is necessarily inefficient.
2. The expert has no power - outcome is decision maker's ideal in expectation.
\Rightarrow Expert would be better off if she can transfer her expertise to the decision maker.

- Enormous literature of applied models builds on Crawford and Sobel.

Expertise in Models

- The economic models of expertise contrast with expertise in practice.
- Canonical cheap talk model of Crawford \& Sobel (1982) has two key conclusions:

1. Communication is valuable, but it is necessarily inefficient.
2. The expert has no power - outcome is decision maker's ideal in expectation.
\Rightarrow Expert would be better off if she can transfer her expertise to the decision maker.

- Enormous literature of applied models builds on Crawford and Sobel.
- Mismatch between models and practice - Why?

Expertise in Models v. Practice
$\xrightarrow{\text { Treatment }}$

Expertise in Models v. Practice

Expertise in Models v. Practice

- Crawford-Sobel: Relationship between treatments and outcomes is linear with known slope.

Expertise in Models v. Practice

- Crawford-Sobel: Relationship between treatments and outcomes is linear with known slope.

Expertise in Models v. Practice

- Crawford-Sobel: Relationship between treatments and outcomes is linear with known slope.
- Physician reveals ideal treatment

Expertise in Models v. Practice

- Crawford-Sobel: Relationship between treatments and outcomes is linear with known slope.
- Physician reveals ideal treatment \rightarrow Patient inverts the mapping and learns own ideal treatment.

Expertise in Models v. Practice

- Crawford-Sobel: Relationship between treatments and outcomes is linear with known slope.
- Physician reveals ideal treatment \rightarrow Patient inverts the mapping and learns own ideal treatment.
- Practice: Relationship between treatments and outcomes is highly unknown and complex.

Expertise in Models v. Practice

- Crawford-Sobel: Relationship between treatments and outcomes is linear with known slope.
- Physician reveals ideal treatment \rightarrow Patient inverts the mapping and learns own ideal treatment.
- Practice: Relationship between treatments and outcomes is highly unknown and complex.

Expertise in Models v. Practice

- Crawford-Sobel: Relationship between treatments and outcomes is linear with known slope.
- Physician reveals ideal treatment \rightarrow Patient inverts the mapping and learns own ideal treatment.
- Practice: Relationship between treatments and outcomes is highly unknown and complex.

Expertise in Models v. Practice

- Crawford-Sobel: Relationship between treatments and outcomes is linear with known slope.
- Physician reveals ideal treatment \rightarrow Patient inverts the mapping and learns own ideal treatment.
- Practice: Relationship between treatments and outcomes is highly unknown and complex.
- Physician reveals ideal treatment \rightarrow Patient cannot invert the mapping and faces uncertainty.

This Paper

- Strategic communication in complex environments where the relationship is non-invertible.
- Strategic communication in complex environments where the relationship is non-invertible.
- We model the mappings from actions to outcomes as paths of Brownian Motion.
- Strategic communication in complex environments where the relationship is non-invertible.
- We model the mappings from actions to outcomes as paths of Brownian Motion.
- The expert knows the outcome of every action.
- The decision maker knows the joint distribution of outcomes for each action.
- Strategic communication in complex environments where the relationship is non-invertible.
- We model the mappings from actions to outcomes as paths of Brownian Motion.
- The expert knows the outcome of every action.
- The decision maker knows the joint distribution of outcomes for each action.
- Equilibrium reverses the predictions of C-S:

1. Communication is Pareto efficient.
2. The expert has full power - the equilibrium outcome is equivalent to full delegation.

Reconciling Theory with Practice

- We capture the decision making power of the expert.

Reconciling Theory with Practice

- We capture the decision making power of the expert.
- This power comes purely from their informational advantage.

Reconciling Theory with Practice

- We capture the decision making power of the expert.
- This power comes purely from their informational advantage. Is this the right explanation?
- We capture the decision making power of the expert.
- This power comes purely from their informational advantage. Is this the right explanation?
- "As a consequence of the information inequality, the patient must delegate to the physician much of his freedom of choice."
- Kenneth Arrow (1963, p.964)
- We capture the decision making power of the expert.
- This power comes purely from their informational advantage. Is this the right explanation?
- "As a consequence of the information inequality, the patient must delegate to the physician much of his freedom of choice."
- Kenneth Arrow (1963, p.964)
- Large information gaps are the source of expert power. (Weber, 1922; French and Raven, 1959).
- We capture the decision making power of the expert.
- This power comes purely from their informational advantage. Is this the right explanation?
- "As a consequence of the information inequality, the patient must delegate to the physician much of his freedom of choice."
- Kenneth Arrow (1963, p.964)
- Large information gaps are the source of expert power. (Weber, 1922; French and Raven, 1959).
- We show how large of an "information inequality" supports expert power by itself.

Brownian Motion and Beyond

- Why Brownian Motion?

Brownian Motion and Beyond

- Why Brownian Motion? It is a tractable model with attractive properties.

Brownian Motion and Beyond

- Why Brownian Motion? It is a tractable model with attractive properties.
- Parameterize how much is learned from the expert's ideal action.
- Show how much learning is too much learning for supporting expert power.

Brownian Motion and Beyond

- Why Brownian Motion? It is a tractable model with attractive properties.
- Parameterize how much is learned from the expert's ideal action.
- Show how much learning is too much learning for supporting expert power.
- Brownian Motion, and its special features, are not necessary for expert power.

Brownian Motion and Beyond

- Why Brownian Motion? It is a tractable model with attractive properties.
- Parameterize how much is learned from the expert's ideal action.
- Show how much learning is too much learning for supporting expert power.
- Brownian Motion, and its special features, are not necessary for expert power.
- We provide examples of other environments and extract the essential ingredient for expert power.

Brownian Motion and Beyond

- Why Brownian Motion? It is a tractable model with attractive properties.
- Parameterize how much is learned from the expert's ideal action.
- Show how much learning is too much learning for supporting expert power.
- Brownian Motion, and its special features, are not necessary for expert power.
- We provide examples of other environments and extract the essential ingredient for expert power.
- A large 'information inequality' is the essential ingredient for expert power.
- Expert can reveal her most-preferred action without eliminating all uncertainty.

1. Brownian Motion Model.
2. Results

- Decision making without the Expert.
- Main Result: Decision making with the Expert.

3. Extensions: Brownian Motion and Beyond.

- Players: Sender (the expert) and receiver (the decision maker).
- Actions and Messages: $\mathcal{A}=[0, q]$ for $q \in \mathbb{R}$ and $r \in \mathcal{M}$.
- Outcomes: $\psi: \mathcal{A} \rightarrow \mathbb{R}$ maps actions to outcomes.
- Preferences: $u^{\mathrm{S}}(a)=-(\psi(a)-b)^{2}$ and $u^{\mathrm{R}}(a)=-\psi(a)^{2}$.
- Results hold for weakly concave $u^{\mathrm{R}}(\cdot)$ and any $u^{\mathrm{S}}(\cdot)$ maximized at b.

- Solution Concept: Perfect Bayesian Equilibrium.

Complex Environments in A Picture

action

Complex Environments in A Picture

Complex Environments in A Picture

- The mapping $\psi: \mathcal{A} \rightarrow \mathbb{R}$ is given by the path of a Brownian Motion.

Complex Environments in A Picture

- The mapping $\psi: \mathcal{A} \rightarrow \mathbb{R}$ is given by the path of a Brownian Motion.
- Expert knows the realized mapping.

Complex Environments in A Picture

- The mapping $\psi: \mathcal{A} \rightarrow \mathbb{R}$ is given by the path of a Brownian Motion.
- Expert knows the realized mapping. Receiver does not know the realized mapping.

Receiver's Beliefs

- Receiver knows mapping is Brownian Motion

Receiver's Beliefs

- Receiver knows mapping is Brownian Motion with parameters: ψ_{0},

Receiver's Beliefs

- Receiver knows mapping is Brownian Motion with parameters: ψ_{0}, drift μ,

Receiver's Beliefs

- Receiver knows mapping is Brownian Motion with parameters: ψ_{0}, drift μ, and scale σ.

Receiver's Beliefs

- Receiver knows mapping is Brownian Motion with parameters: ψ_{0}, drift μ, and scale σ.
- Receiver Beliefs: $\psi(a) \sim \mathcal{N}\left(\psi_{0}+\mu a, \sigma^{2} a\right)$ and $\operatorname{Cov}\left(\psi(a), \psi\left(a^{\prime}\right)\right)=\sigma^{2} \min \left\{a, a^{\prime}\right\}$.

Receiver's Beliefs

- Receiver knows mapping is Brownian Motion with parameters: ψ_{0}, drift μ, and scale σ.
- Receiver Beliefs: $\psi(a) \sim \mathcal{N}\left(\psi_{0}+\mu a, \sigma^{2} a\right)$ and $\operatorname{Cov}\left(\psi(a), \psi\left(a^{\prime}\right)\right)=\sigma^{2} \min \left\{a, a^{\prime}\right\}$.
- Learning one point in the mapping \neq Learning the whole mapping.

Simple v. Complex Environments

- Key Difference: How much the receiver learns from the expert's most preferred action.
- This is captured with the "informational inequality" about $\psi: \mathcal{A} \rightarrow \mathbb{R}$.

Simple v. Complex Environments

- Key Difference: How much the receiver learns from the expert's most preferred action.
- This is captured with the "informational inequality" about $\psi: \mathcal{A} \rightarrow \mathbb{R}$.
- Simple Environments: Relationship is known and outcomes are perfectly correlated.
- $\psi(a)=\theta-a$ where $\theta \in \mathbb{R}$ is the private information of the expert.

$$
\psi(a)=b \Rightarrow \theta=b+a \Rightarrow \psi\left(a^{\prime}\right)=(b+a)-a^{\prime}
$$

- Key Difference: How much the receiver learns from the expert's most preferred action.
- This is captured with the "informational inequality" about $\psi: \mathcal{A} \rightarrow \mathbb{R}$.
- Simple Environments: Relationship is known and outcomes are perfectly correlated.
- $\psi(a)=\theta-a$ where $\theta \in \mathbb{R}$ is the private information of the expert.

$$
\psi(a)=b \Rightarrow \theta=b+a \Rightarrow \psi\left(a^{\prime}\right)=(b+a)-a^{\prime}
$$

- Complex Environments: Relationship is unknown and outcomes are imperfectly correlated.
- $\psi(\cdot)$ is a Brownian Motion with parameters μ and σ :

$$
\psi(a)=b \Rightarrow \psi(a+x) \sim b+\mathcal{N}\left(\mu x, \sigma^{2} x\right)
$$

1. Brownian Motion Model.
2. Results

- Decision making without the Expert.
- Main Result: Decision making with the Expert.

3. Extensions: Brownian Motion and Beyond.

Decision Making Without the Expert

- Decisions without the expert involve a tradeoff between risk and return.

Decision Making Without the Expert

- Decisions without the expert involve a tradeoff between risk and return.
- $a>0$ improves the outcome by μa (up until 0), but increases variance by $\sigma^{2} a$.

Decision Making Without the Expert

- Decisions without the expert involve a tradeoff between risk and return.
- $a>0$ improves the outcome by μa (up until 0), but increases variance by $\sigma^{2} a$.
- We call half of this ratio $\alpha=\frac{\sigma^{2}}{2|\mu|}$ as the risk complexity of the environment.

Decision Making Without the Expert

Lemma 1: Without additional information, receiver picks $a^{n o}$ based on the risk complexity α and the status-quo outcome ψ_{0} :
(i) If $\alpha<\psi_{0}$ receiver chooses $a^{\text {no }}$ such that $\mathbb{E}\left[\psi\left(a^{n o}\right)\right]=\alpha$,

Decision Making Without the Expert

Lemma 1: Without additional information, receiver picks $a^{n o}$ based on the risk complexity α and the status-quo outcome ψ_{0} :
(i) If $\alpha<\psi_{0}$ receiver chooses $a^{n o}$ such that $\mathbb{E}\left[\psi\left(a^{n o}\right)\right]=\alpha$,
(ii) If $\alpha>\psi_{0}$ then the receiver chooses $a^{n o}=0$.

1. The Model: Introducing Complex Environments.
2. Results

- Decision making without the Expert.
- Main Result: Decision making with the Expert.

3. Extensions: Brownian Motion and Beyond.

Decision Making with the Expert

- We introduce the sender (expert) back into the game.
- The sender observes the realized outcomes $\psi(\cdot)$ and recommends an action $r \in \mathcal{A}$.
- The receiver observes the recommendation and makes a choice $a \in \mathcal{A}$.

Decision Making with the Expert

- We introduce the sender (expert) back into the game.
- The sender observes the realized outcomes $\psi(\cdot)$ and recommends an action $r \in \mathcal{A}$.
- The receiver observes the recommendation and makes a choice $a \in \mathcal{A}$.
- How much power does the sender have over the final decision?
- Full power if she can reveal her ideal action while keeping the receiver uncertain enough.

The Sender's Communication Strategy

- First-point strategy: Sender recommends the first of her optimal actions.

$$
m^{*}(\psi):=\min _{a \in[0, q]}\left\{a: a \in \underset{a^{\prime} \in \mathcal{A}}{\arg \max } u^{S}\left(a^{\prime} \mid \psi\right)\right\} .
$$

The Sender's Communication Strategy

- First-point strategy: Sender recommends the first of her optimal actions.

$$
m^{*}(\psi):=\min _{a \in[0, q]}\left\{a: a \in \underset{a^{\prime} \in \mathcal{A}}{\arg \max } u^{S}\left(a^{\prime} \mid \psi\right)\right\}
$$

- First-point equilibria: Sender uses the first-point strategy and the receiver accepts it.

The Sender's Communication Strategy

- First-point strategy: Sender recommends the first of her optimal actions.

$$
m^{*}(\psi):=\min _{a \in[0, q]}\left\{a: a \in \underset{a^{\prime} \in \mathcal{A}}{\arg \max } u^{S}\left(a^{\prime} \mid \psi\right)\right\}
$$

- First-point equilibria: Sender uses the first-point strategy and the receiver accepts it.
- Sender's incentive compatibility is immediate, the receiver's incentive compatibility is subtle...

The Sender's Communication Strategy

- First-point strategy: Sender recommends the first of her optimal actions.

$$
m^{*}(\psi):=\min _{a \in[0, q]}\left\{a: a \in \underset{a^{\prime} \in \mathcal{A}}{\arg \max } u^{S}\left(a^{\prime} \mid \psi\right)\right\}
$$

- First-point equilibria: Sender uses the first-point strategy and the receiver accepts it.
- Sender's incentive compatibility is immediate, the receiver's incentive compatibility is subtle...
- What does the the receiver learn from the recommendation about the path?

The Receiver's Inference Problem

1. Event $=b$: Recommendation r^{*} has outcome $\psi\left(r^{*}\right)=b$.

The Receiver's Inference Problem

1. Event $=b$: Recommendation r^{*} has outcome $\psi\left(r^{*}\right)=b$.

The Receiver's Inference Problem

1. Event $=b$: Recommendation r^{*} has outcome $\psi\left(r^{*}\right)=b$.

- r^{*} is the first-minimum.

The Receiver's Inference Problem

1. Event $=b$: Recommendation r^{*} has outcome $\psi\left(r^{*}\right)=b$.

- r^{*} is the first-minimum.
- No informational spillover to the right beyond $\psi\left(r^{*}\right)=b-$ Beliefs are neutral.

The Receiver's Inference Problem

2. Event $>b$: Set of paths where $\psi\left(r^{*}\right)>b$.

The Receiver's Inference Problem

2. Event $>b$: Set of paths where $\psi\left(r^{*}\right)>b$.

The Receiver's Inference Problem

2. Event $>b$: Set of paths where $\psi\left(r^{*}\right)>b$.

- r^{*} is the first-minimum.

The Receiver's Inference Problem

2. Event $>b$: Set of paths where $\psi\left(r^{*}\right)>b$.

- r^{*} is the first-minimum. And r^{*} is also the last-minimum.

The Receiver's Inference Problem

2. Event $>b$: Set of paths where $\psi\left(r^{*}\right)>b$.

- r^{*} is the first-minimum. And r^{*} is also the last-minimum.
- Beliefs to the right are not neutral - Formally they follow a Brownian Meander process.

The Receiver's Inference Problem

- Recommendation reveals precisely the sender's optimal action but imprecisely its outcome.
- Receiver forms posterior over these events using the Bayes' rule.
- A new identity: The joint distribution of the hitting time and the location of the minimum.

Efficient Cheap Talk

Theorem 1. The first-point equilibrium exists if and only if $q \leq q_{b}^{\max }$:
(i) The misalignment is small compared to the risk complexity:

$$
\text { If } 0<b<\frac{\sigma^{2}}{2|\mu|}=\alpha \text { then } q_{b}^{\max }=\infty .
$$

Efficient Cheap Talk

Theorem 1. The first-point equilibrium exists if and only if $q \leq q_{b}^{\max }$:
(i) The misalignment is small compared to the risk complexity:

$$
\text { If } 0<b<\frac{\sigma^{2}}{2|\mu|}=\alpha \text { then } q_{b}^{\max }=\infty
$$

(ii) Or if the action space is not too large:

$$
\text { If } \psi_{0}>b>\frac{\sigma^{2}}{2|\mu|}=\alpha \text { then } q_{b}^{\max } \in \mathbb{R}_{++} \text {. }
$$

Efficient Cheap Talk

Theorem 1. The first-point equilibrium exists if and only if $q \leq q_{b}^{\max }$:
(i) The misalignment is small compared to the risk complexity:

$$
\text { If } 0<b<\frac{\sigma^{2}}{2|\mu|}=\alpha \text { then } q_{b}^{\max }=\infty .
$$

(ii) Or if the action space is not too large:

$$
\text { If } \psi_{0}>b>\frac{\sigma^{2}}{2|\mu|}=\alpha \text { then } q_{b}^{\max } \in \mathbb{R}_{++} .
$$

The Receiver's Optimal Response: $b \leq \alpha$

- Event $>b \Longrightarrow$ Receiver and sender have aligned action preferences.

The Receiver's Optimal Response: $b \leq \alpha$

- Event $>b \Longrightarrow$ Receiver and sender have aligned action preferences.
- Event $=b \Longrightarrow$ Receiver and sender have misaligned action preferences.

The Receiver's Optimal Response: $b \leq \alpha$

- Event $>b \Longrightarrow$ Receiver and sender have aligned action preferences.
- Event $=b \Longrightarrow$ Receiver and sender have misaligned action preferences.
- Logic of the 'no expert' result applies for deviations to right of the recommendation.

Efficient Cheap Talk

Theorem 1. The first-point equilibrium exists if and only if $q \leq q_{b}^{\max }$:
(i) The misalignment is small compared to the risk complexity:

$$
\text { If } 0<b<\frac{\sigma^{2}}{2|\mu|}=\alpha \text { then } q_{b}^{\max }=\infty
$$

(ii) Or if the action space is not too large:

$$
\text { If } \psi_{0}>b>\frac{\sigma^{2}}{2|\mu|}=\alpha \text { then } q_{b}^{\max } \in \mathbb{R}_{++}
$$

The Receiver's Optimal Response: $b>\alpha$

- For $b>\alpha$, the receiver faces a trade-off:
- In Event $>\mathrm{b}$ the receiver's best response is $a=r^{*}$.
- In Event $=\mathrm{b}$ the receiver's best response is a^{*} such that $\mathbb{E}\left[\psi\left(a^{*}\right)\right]=\alpha$.
- Efficient cheap talk requires the receiver to choose exactly r^{*} and nothing in between.

Equilibrium Dominance

Before showing existence, we first explain how action space influences the receivers inference problem.
Lemma 2: If the first-point equilibrium exists for $\mathcal{A}=[0, q]$, then it exists for $\mathcal{A}^{\prime}=\left[0, q^{\prime}\right]$ whenever $q^{\prime}<q$.

Equilibrium Dominance

- Same first-minimum and weaker last-minimum requirement as $q \rightarrow q^{\prime}$.
- No paths are eliminated as $q \rightarrow q^{\prime}$.

Equilibrium Dominance

- Same first-minimum and weaker last-minimum requirement as $q \rightarrow q^{\prime}$.
- No paths are eliminated as $q \rightarrow q^{\prime}$. But paths are added to Event $>\mathrm{b}$ as $q \rightarrow q^{\prime}$.

Equilibrium Dominance

- Same first-minimum and weaker last-minimum requirement as $q \rightarrow q^{\prime}$.
- No paths are eliminated as $q \rightarrow q^{\prime}$. But paths are added to Event $>$ b as $q \rightarrow q^{\prime}$.
\Rightarrow Probability of Event $>b$ is decreasing in q.

Equilibrium Existence

- Lemma 3: The first-point equilibrium exists for some $\mathcal{A}=[0, q]$ with $q>0$.

Equilibrium Existence

- If q is not too large, the probability of Event $>b$ is greater than Event $=b$.
- Moreover, if q is not too large the Brownian Meander dominates in expectation.

Equilibrium Existence

- If q is not too large, the probability of Event $>b$ is greater than Event $=b$.
- Moreover, if q is not too large the Brownian Meander dominates in expectation.
- Equilibrium does not rely on risk aversion, although it makes achieving it easier.

Efficient Cheap Talk

Theorem 1. The first-point equilibrium exists if and only if one of the following holds:
(i) Risk complexity is high and the expert's recommendation is very hard to invert.

$$
b \leq \frac{\sigma^{2}}{2|\mu|}
$$

(ii) The action space is not too large and there is sufficient action alignment with the expert.

$$
\mathcal{A}=[0, q] \text { with } q \leq q_{b}^{\max }
$$

Comparative Statics I

How does the size of largest action space $q_{b}^{\max }$ change with the primitives of the environment?

Comparative Statics I

How does the size of largest action space $q_{b}^{\max }$ change with the primitives of the environment?
C1: $q_{b}^{\max }$ is decreasing in b for $b>\alpha$.

- Less likely to be 'aligned' (Event >b), and incremental gains are more attractive.

Comparative Statics I

How does the size of largest action space $q_{b}^{\max }$ change with the primitives of the environment?

C1: $q_{b}^{\max }$ is decreasing in b for $b>\alpha$.

- Less likely to be 'aligned' (Event > b), and incremental gains are more attractive.

C2: $q_{b}^{\max }$ is increasing in μ.

- More likely to be 'aligned' (Event > b), and incremental gains are less attractive.

Comparative Statics I

How does the size of largest action space $q_{b}^{\max }$ change with the primitives of the environment?
C1: $q_{b}^{\max }$ is decreasing in b for $b>\alpha$.

- Less likely to be 'aligned' (Event >b), and incremental gains are more attractive.

C2: $q_{b}^{\max }$ is increasing in μ.

- More likely to be 'aligned' (Event > b), and incremental gains are less attractive.

Increased σ has conflicting effects.

- Our simulations suggests that $q_{b}^{\max }$ is generally increasing in $\sigma>0$.

Comparative Statics II

We also look for comparative statics for welfare within the first-point equilibrium (valid for $q<q_{b}^{\max }$).

Comparative Statics II

We also look for comparative statics for welfare within the first-point equilibrium (valid for $q<q_{b}^{\max }$).

C3: Both players utility strictly increase in q.

- Wider action space \Rightarrow Path more likely to cross $b \Rightarrow$ Both players better off.

Comparative Statics II

We also look for comparative statics for welfare within the first-point equilibrium (valid for $q<q_{b}^{\max }$).

C3: Both players utility strictly increase in q.

- Wider action space \Rightarrow Path more likely to cross $b \Rightarrow$ Both players better off.

C4: Receiver utility strictly decreases and sender utility strictly increases in b.

- Larger bias \Rightarrow Path more likely to cross b \& Equilibrium becomes worse for receiver $(\geq b)$.

Comparative Statics II

We also look for comparative statics for welfare within the first-point equilibrium (valid for $q<q_{b}^{\max }$).
C3: Both players utility strictly increase in q.

- Wider action space \Rightarrow Path more likely to cross $b \Rightarrow$ Both players better off.

C4: Receiver utility strictly decreases and sender utility strictly increases in b.

- Larger bias \Rightarrow Path more likely to cross b \& Equilibrium becomes worse for receiver $(\geq b)$.

C5: Expected equilibrium outcome approaches to b as $\sigma \rightarrow \infty$.

- Very complex issues \Rightarrow More likely to cross b \& Receiver doesn't override \Rightarrow Both better off.

Other Efficient Equilibria

Proposition 1: The only efficient equilibria are sender optimal.

Other Efficient Equilibria

Proposition 1: The only efficient equilibria are sender optimal.

- Efficient equilibrium \Rightarrow Equilibrium action distribution have full support.

Other Efficient Equilibria

Proposition 1: The only efficient equilibria are sender optimal.

- Efficient equilibrium \Rightarrow Equilibrium action distribution have full support.
- If not, then an open set $\mathcal{S} \subseteq \mathcal{A}$ is omitted.
\Rightarrow Positive probability that the $\psi(\cdot)$ attains a minimum weakly above b at some $a \in \mathcal{S}$.
\Rightarrow Recommending the minimum instead improves the payoff for both players.

Other Efficient Equilibria

Proposition 1: The only efficient equilibria are sender optimal.

- Efficient equilibrium \Rightarrow Equilibrium action distribution have full support.
- If not, then an open set $\mathcal{S} \subseteq \mathcal{A}$ is omitted.
\Rightarrow Positive probability that the $\psi(\cdot)$ attains a minimum weakly above b at some $a \in \mathcal{S}$.
\Rightarrow Recommending the minimum instead improves the payoff for both players.
- Full support action distribution \Rightarrow Sender recommends own most preferred action.

1. The Model: Introducing Complex Environments.
2. Results

- Decision making without the Expert.
- Main Result: Decision making with the Expert.

3. Extensions: Brownian Motion and Beyond.

Delegating v. Communicating?

Question: Should the principal of an organization hire an expert to do a task or to get advice?

Delegating v. Communicating?

Question: Should the principal of an organization hire an expert to do a task or to get advice?

- Simple environments: There is a trade-off between information and control. (Dessein, 2002)

Delegating v. Communicating?

Question: Should the principal of an organization hire an expert to do a task or to get advice?

- Simple environments: There is a trade-off between information and control. (Dessein, 2002)
- Complex environments: If $q \leq q_{b}^{\max }$ they are equivalent - either way control is lost.

Delegating v. Communicating?

Question: Should the principal of an organization hire an expert to do a task or to get advice?

- Simple environments: There is a trade-off between information and control. (Dessein, 2002)
- Complex environments: If $q \leq q_{b}^{\max }$ they are equivalent - either way control is lost.

Question: What if $q>q_{b}^{\max }$?

Delegating v. Communicating?

Question: Should the principal of an organization hire an expert to do a task or to get advice?

- Simple environments: There is a trade-off between information and control. (Dessein, 2002)
- Complex environments: If $q \leq q_{b}^{\max }$ they are equivalent - either way control is lost.

Question: What if $q>q_{b}^{\max }$?

- Receiver can commit to taking actions from $\left[0, q_{b}^{\max }\right]$ to facilitate efficient communication.

Delegating v. Communicating?

Question: Should the principal of an organization hire an expert to do a task or to get advice?

- Simple environments: There is a trade-off between information and control. (Dessein, 2002)
- Complex environments: If $q \leq q_{b}^{\max }$ they are equivalent - either way control is lost.

Question: What if $q>q_{b}^{\max }$?

- Receiver can commit to taking actions from $\left[0, q_{b}^{\max }\right]$ to facilitate efficient communication.
- But it is better for him to delegate full decision making power.
- Restriction to $\left[0, q_{b}^{\max }\right]$ creates action-alignment by making both players worse off.
- Brownian Motion is a tractable setup to illustrate how experts derive power in practice.
- Sender optimal and efficient cheap talk can be supported in other environments.
- Brownian Motion is a tractable setup to illustrate how experts derive power in practice.
- Sender optimal and efficient cheap talk can be supported in other environments.
- Action-alignment: The receiver and sender can have different ideal actions for every state.
- Distribution: Joint distribution can be non-gaussian, non-markov or have dependent increments.
- Action/State Space: Discrete, continuum, or higher dimensional. Also they can be isomorphic.
- Brownian Motion is a tractable setup to illustrate how experts derive power in practice.
- Sender optimal and efficient cheap talk can be supported in other environments.
- Action-alignment: The receiver and sender can have different ideal actions for every state.
- Distribution: Joint distribution can be non-gaussian, non-markov or have dependent increments.
- Action/State Space: Discrete, continuum, or higher dimensional. Also they can be isomorphic.
- What is the common feature then?

Beyond Brownian Motion

- Brownian Motion is a tractable setup to illustrate how experts derive power in practice.
- Sender optimal and efficient cheap talk can be supported in other environments.
- Action-alignment: The receiver and sender can have different ideal actions for every state.
- Distribution: Joint distribution can be non-gaussian, non-markov or have dependent increments.
- Action/State Space: Discrete, continuum, or higher dimensional. Also they can be isomorphic.
- What is the common feature then? Expert advice is non-invertible.
- Brownian Motion is a tractable setup to illustrate how experts derive power in practice.
- Sender optimal and efficient cheap talk can be supported in other environments.
- Action-alignment: The receiver and sender can have different ideal actions for every state.
- Distribution: Joint distribution can be non-gaussian, non-markov or have dependent increments.
- Action/State Space: Discrete, continuum, or higher dimensional. Also they can be isomorphic.
- What is the common feature then? Expert advice is non-invertible.

Expert reveals her own optimal action \nRightarrow Decision maker learns his optimal action.

Minimally Complex Extension of Crawford-Sobel

- Outcome Mapping: $\psi(a)=\psi_{0}+a$ or $\psi(a)=\psi_{0}-a$ with $\psi_{0} \in \mathbb{R}$.

Minimally Complex Extension of Crawford-Sobel

- Outcome Mapping: $\psi(a)=\psi_{0}+a$ or $\psi(a)=\psi_{0}-a$ with $\psi_{0} \in \mathbb{R}$.
- Efficient equilibrium exists if and only if two states are equally likely.

Minimally Complex Extension of Crawford-Sobel

- Outcome Mapping: $\psi(a)=\psi_{0}+a$ or $\psi(a)=\psi_{0}-a$ with $\psi_{0} \in \mathbb{R}$.
- Efficient equilibrium exists if and only if two states are equally likely.
- Players always have different optimal actions.

Minimally Complex Extension of Crawford-Sobel

- Outcome Mapping: $\psi(a)=\psi_{0}+a$ or $\psi(a)=\psi_{0}-a$ with $\psi_{0} \in \mathbb{R}$.
- Efficient equilibrium exists if and only if two states are equally likely.
- Players always have different optimal actions. Receiver faces directional uncertainty.

Expert Advice in the Long-run

Question: How does the expert power change in long-run relationships?

Expert Advice in the Long-run

Question: How does the expert power change in long-run relationships?

- Decision maker learns the relationship between actions and outcomes over time.

Question: How does the expert power change in long-run relationships?

- Decision maker learns the relationship between actions and outcomes over time.
- Expert can't use her information efficiently - communicates inefficiently to keep the receiver uncertain.

Question: How does the expert power change in long-run relationships?

- Decision maker learns the relationship between actions and outcomes over time.
- Expert can't use her information efficiently - communicates inefficiently to keep the receiver uncertain.
- Decision maker's ability to learn can make communication so inefficient that she becomes worse off compared to single-period efficient communication.

Literature Review

- Cheap Talk (Crawford and Sobel, 1982).
- Invertible. Equilibrium: Expert sacrifices power to make recommendations non-invertible.
- Bayesian Persuasion (Kamenica and Gentzkow, 2011).
- Commitment makes recommendation non-invertible. We get sender-optimal without commitment.
- Unknown bias (Morgan and Stocken, 2003).
- Non-invertible, but low residual uncertainty \Rightarrow Equilibria are generally inefficient.
- Discrete and Independent Actions (Aghion and Tirole, 1997)
- No informational spillover.
- Brownian Motion (Callander, 2008; Callander, Lambert, Matouschek, 2021; Dall'Ara, 2023).
- We study non-invertibility broadly, and how sender can shape information spillover.

Conclusion

- In practice experts are "overtowering.'

Conclusion

- In practice experts are "overtowering.' In models they have no power and communication is inefficient.

Conclusion

- In practice experts are "overtowering.' In models they have no power and communication is inefficient.
- We develop a novel and comprehensive framework that captures expert-power in practice.

Conclusion

- In practice experts are "overtowering.' In models they have no power and communication is inefficient.
- We develop a novel and comprehensive framework that captures expert-power in practice.
- When the decision maker faces large "information inequality" the canonical results are reversed:

1. Experts have full power - they can implement her optimal action in equilibrium.
2. Communication is efficient.

Conclusion

- In practice experts are "overtowering.' In models they have no power and communication is inefficient.
- We develop a novel and comprehensive framework that captures expert-power in practice.
- When the decision maker faces large "information inequality" the canonical results are reversed:

1. Experts have full power - they can implement her optimal action in equilibrium.
2. Communication is efficient.

- Expert power comes from how much information remains private after the recommendation.

Thank You!

Extra Slides

States and Beliefs

- $\psi: A \rightarrow \mathbb{R}$ and Ψ is the set of all ψ.
- It can be also thought as if $\psi(\cdot)$ is a known function of a random variable θ (with underlying probability triple $(\Omega, \mathcal{F}, \omega)$) privately observed by the sender.
- State is θ and state space is $\theta \in \Theta$.
- Receiver prior belief: $\omega(\cdot)$ over Θ
- e.g. $\Theta=[0,1]$ and ω is the uniform distribution.
- e.g. $\theta=C[0, q]$ and ω is the Wiener measure.
- We refer to the induced beliefs about $\psi(\cdot)$ instead of ω.

We call $\omega(\cdot \mid \cdot), a(\cdot), m(\cdot)$ a Perfect Bayesian Equilibrium if

1. $\omega(\psi \mid r \in m(\psi))$ is obtained via Bayes' rule whenever possible,
2. $a(r) \in \arg \max _{a^{\prime} \in \mathcal{A}} \mathbb{E}\left[u_{R}\left(a^{\prime}, \psi\right) \mid \omega(\psi \mid r \in m(\psi))\right]$ for every $r \in \mathcal{M}$,
3. $m(\psi) \in \arg \max _{r^{\prime} \in \mathcal{M}} u_{S}\left(a\left(r^{\prime}\right), \psi\right)$ for every $\psi \in \Psi$.

Simple Environments

- Players: Sender and Receiver.
- Actions: $\mathcal{A}=\mathbb{R}_{+}$.
- Outcomes: $\psi(a)=\theta-a$ common knowledge
- Sender's private information: realized θ.
- Receiver's prior: $\theta \sim \mathcal{I} \subseteq \mathbb{R}_{+}$.
- Payoffs: $u^{S}(a)=-(\psi(a)-b)^{2}=-(\theta-a-b)^{2}, u^{R}(a)=-(\psi(a))^{2}=-(\theta-a)^{2}$.

Simple Environments: Equilibrium

- All equilibria are partitional: $m^{*}(\theta)=r_{i}$ if and only if $\theta_{i} \in\left[\theta_{i-1}, \theta_{i}\right]$.
- Sender incentive compatibility limits the number of partitions.
- If partitions are too small, types at the boundary are too close to each other.

Complex Environments

- Players: Sender and Receiver.
- Actions: $\mathcal{A}=\mathbb{R}_{+}$.
- Outcomes: $\psi(a)=\psi_{0}+\mu a+\sigma W(a)$.
- The parameters ψ_{0}, μ and σ common knowledge.
- Formally state is $W(a)$ and state space is $\mathcal{C}[0, q]$.
- Sender's private information: The realized path $\psi(a)$.
- Receiver prior belief: $\omega(\cdot)$ over $\mathcal{C}[0, q]$ given by the Wiener measure.
- We generally refer to the induced beliefs about $\psi(\cdot)$ instead of $W(\cdot)$.

No Expert - Proof

Proof of Lemma 1

By the mean-variance representation of quadratic utility, the receiver's expected utility is:

$$
\mathbb{E}\left[u_{R}(a)\right]=-[\psi(0)+\mu a]^{2}-\sigma^{2} a .
$$

The first and second order conditions for optimality are:

$$
\begin{aligned}
& \frac{d \mathbb{E}\left[u_{R}(a)\right]}{d a}=-2 \mu[\psi(0)+\mu a]-\sigma^{2} \\
& \frac{d^{2} \mathbb{E}\left[u_{R}(a)\right]}{d a^{2}}=-2 \mu^{2} \leq 0
\end{aligned}
$$

The result follows from the first order condition.

- We get a similar result for other weakly concave utility.
- But α is no longer a constant threshold.
- We can define Event $=b$ using the hitting "action" (time).
- First hitting action: $\tau(x):=\inf \{a \in[0, q] \mid \psi(a)=x\}$.
- Probability of the path first-hitting $b<\psi_{0}$:

$$
\mathbb{P}(\text { Event }=b \text { at } a)=\mathbb{P}(\tau(b) \in d a)=\frac{\psi_{0}-b}{\sigma a \sqrt{a}} \phi\left(\frac{\psi_{0}-b+\mu a}{\sigma \sqrt{a}}\right) d a \quad \forall x \in \mathbb{R}_{+}
$$

- First hitting action: $\tau(x):=\inf \{a \in[0, q] \mid \psi(a)=x\}$.
- Minimum of the path $\iota(w, x): \iota(w, x)=\inf \{\psi(a) \mid a \in[w, x]\}$.
- $\mathbb{P}\left(\right.$ Event $>\mathrm{b}$ at $\left.m^{*}(\psi)=r^{*}\right)=\int_{b}^{\psi_{0}} \mathbb{P}\left(\tau(y) \in d r^{*}, \iota(q) \in d y\right) d y$.

- First hitting action: $\tau(x):=\inf \{a \in[0, q] \mid \psi(a)=x\}$.
- Minimum of the path $\iota(w, x): \iota(w, x)=\inf \{\psi(a) \mid a \in[w, x]\}$.
- $\mathbb{P}\left(\right.$ Event $>\mathrm{b}$ at $\left.m^{*}(\psi)=r^{*}\right)=\int_{b}^{\psi_{0}} \mathbb{P}\left(\tau(y) \in d r^{*}, \iota(q) \in d y\right) d y$.
- Using the Strong Markov Property of $W(a)$:

Bayes Updating

- We are interested in $\mathbb{P}\left(\right.$ Event $\left.=\mathrm{b} \mid m^{*}(\psi)=r^{*}\right)$.

Back to Receiver's Inference

- Conditioning event $m^{*}(\psi) \in d r^{*}$ is the (disjoint) union of two events:

1. Event $=\mathrm{b}$ at $m^{*}(\psi)$,
2. Event $>$ b at $m^{*}(\psi)$.

- Regular conditional probability can be obtained as follows:

$$
\begin{aligned}
\mathbb{P}\left(\text { Event }=\mathrm{b} \mid m^{*}(\psi)=r^{*}\right) & =\frac{\mathbb{P}\left(\text { Event }=\mathrm{b} \text { at } m^{*}(\psi) \in d r^{*}\right)}{\mathbb{P}\left(m^{*}(\psi)=r^{*}\right)} \\
& =\frac{\mathbb{P}\left(\text { Event }=\mathrm{b} \text { at } m^{*}(\psi) \in d r^{*}\right)}{\mathbb{P}\left(\text { Event }=\mathrm{b} \text { at } m^{*}(\psi) \in d r^{*}\right)+\mathbb{P}\left(\text { Event }>\mathrm{b} \text { at } m^{*}(\psi) \in d r^{*}\right)} \\
& =\frac{\mathbb{P}\left(\tau(b) \in d r^{*}\right)}{\mathbb{P}\left(\tau(b) \in d r^{*}\right)+\int_{b}^{\psi_{0}} \mathbb{P}\left(\tau(y) \in d r^{*}\right) \mathbb{P}\left(\iota\left(r^{*}, q\right) \in d y\right) d y}
\end{aligned}
$$

- Densities are well defined everywhere $r^{*} \in(0, q]$.

Brownian Motion: Conditional Beliefs

- The beliefs conditional on $\psi\left(r^{*}\right)=y$ are:

$$
\begin{aligned}
\mathbb{E}\left[\psi(a) \mid \psi\left(r^{*}\right)=y\right] & = \begin{cases}\psi_{0}+\frac{a}{r^{*}}\left(y-\psi_{0}\right) & \text { if } a \leq r^{*} \\
y+\mu a & \text { if } a \geq r^{*}\end{cases} \\
\operatorname{Var}\left[\psi(a) \mid \psi\left(r^{*}\right)=y\right] & = \begin{cases}\sigma^{2} \frac{a\left(r^{*}-a\right)}{r^{*}} & \text { if } a \leq r^{*} \\
\sigma^{2}\left(a-r^{*}\right) & \text { if } a \geq r^{*}\end{cases}
\end{aligned}
$$

Brownian Meander I

- Rescale such that $X(a)=\psi(a)-\psi_{0}=\mu a+\sigma W(a)$.

$$
\begin{aligned}
\mathbb{P}(X(a) \in d x \mid \iota(q) \geq-y) & =\frac{\mathbb{P}(X(a) \in d x, \iota(q) \geq-y)}{\mathbb{P}(\iota(q) \geq-y)} \\
& =\frac{\mathbb{P}(X(a) \in d x, \iota(a) \geq-y, \iota(q-a) \geq-(x+y))}{\mathbb{P}(\iota(q) \geq-y)} \\
\mathbb{P}(X(a) \in d x \mid \iota(q) \geq-y) & =\frac{\mathbb{P}(X(a) \in d x, \iota(a) \geq-y) \mathbb{P}(\iota(q-a) \geq-(x+y))}{\mathbb{P}(\iota(q) \geq-y)} .
\end{aligned}
$$

- Looking at $\lim _{-y \rightarrow 0^{-}} \mathbb{P}(X(a) \in d x \mid \iota(q) \geq-y)$:

Back to Inference Back to Existence

$$
\mathbb{P}(M(a, q) \in d x)=\frac{\sqrt{q} x}{\sigma a \sqrt{a}} \frac{\exp \left(\frac{\mu^{2} q}{2 \sigma^{2}}\right) \phi\left(\frac{\mu a-x}{\sigma \sqrt{a}}\right)\left(\Phi\left(\frac{x+\mu(q-a)}{\sigma \sqrt{q-a}}\right)-\exp \left(-\frac{2 \mu x}{\sigma^{2}}\right) \Phi\left(\frac{-x+\mu(q-a)}{\sigma \sqrt{q-a}}\right)\right)}{\left(\mu \sqrt{q} \exp \left(\frac{\mu^{2} q}{2 \sigma^{2}}\right) \Phi\left(\frac{\mu \sqrt{q}}{\sigma}\right)+\frac{\sigma}{\sqrt{2 \pi}}\right)} d x .
$$

- Details of the weak convergence follows from standard arguments.
- See Durrett et al. (1977) and Iafrate and Orsingher (2020) for the details.

- Looking at $\lim _{-y \rightarrow 0^{-}} \mathbb{P}(X(a) \in d x \mid \iota(q) \geq-y)$:

$$
\mathbb{P}(M(a, q) \in d x)=\frac{\sqrt{q} x}{\sigma a \sqrt{a}} \frac{\exp \left(\frac{\mu^{2} q}{2 \sigma^{2}}\right) \phi\left(\frac{\mu a-x}{\sigma \sqrt{a}}\right)\left(\Phi\left(\frac{x+\mu(q-a)}{\sigma \sqrt{q-a}}\right)-\exp \left(-\frac{2 \mu x}{\sigma^{2}}\right) \Phi\left(\frac{-x+\mu(q-a)}{\sigma \sqrt{q-a}}\right)\right)}{\left(\mu \sqrt{q} \exp \left(\frac{\mu^{2} q}{2 \sigma^{2}}\right) \Phi\left(\frac{\mu \sqrt{q}}{\sigma}\right)+\frac{\sigma}{\sqrt{2 \pi}}\right)} d x .
$$

- It coincides with equation (1.4) in Iafrate and Orsingher (2020) when $\sigma=1$.
- It coincides with Rayleigh distribution whenever $\mu=0, \sigma=1$ and $a=q$.

Moments of Brownian Meander

- We characterize the distribution of $M(a, q)$ given its terminal value.
- Special case of $\mu=0$ and $\sigma=1$ is analyzed in Devroye (2010) and Riedel (2021).
- This is obtained by the limit: $\lim _{-y \rightarrow 0^{-}} \mathbb{P}(X(a) \in d x \mid X(q)=c, \iota(q) \geq-y)$:

$$
\begin{aligned}
& \mathbb{P}(M(a, q) \in d x \mid M(q, q)=c)=\frac{x q \sqrt{q}}{c a \sqrt{a} \sqrt{q-a} \sigma}\left[\phi\left(\frac{x-\frac{c a}{q}}{\sqrt{\frac{a}{q}} \sqrt{q-a} \sigma}\right)-\phi\left(\frac{x+\frac{c a}{q}}{\sqrt{\frac{a}{q}} \sqrt{q-a} \sigma}\right)\right] d x \\
& \mathbb{E}[M(a, q) \mid M(q, q)=c]=\frac{\sigma^{2}(q-a)+\frac{c^{2} a}{q}}{c} \operatorname{erf}\left(\frac{c \sqrt{a}}{\sigma \sqrt{2 q(q-a)}}\right)+\exp \left(\frac{-c^{2} a}{2 q(q-a) \sigma^{2}}\right) \sqrt{\frac{2 a(q-a)}{q \pi} \sigma} \\
& \mathbb{E}\left[M^{2}(a, q) \mid M(q, q)=c\right]=\frac{3(q-a) a}{q} \sigma^{2}+\frac{c^{2} a^{2}}{q^{2}}
\end{aligned}
$$

- It follows that that $\lim _{a \rightarrow 0^{+}} \frac{\partial}{\partial a} \mathbb{E}[M(a, q) \mid M(q, q)=c]=\infty$.

Equilibrium Dominance

- First hitting action: $\tau(x):=\inf \{a \in[0, q] \mid \psi(a)=x\}$.
- Minimum of the path $\iota(w, x): \iota(w, x)=\inf \{\psi(a) \mid a \in[w, x]\}$.
- We have the probabilities given by:

$$
\begin{aligned}
& \left.\mathbb{P}\left(\text { Event }=b \text { at } r^{*}\right)=\mathbb{P}\left(\tau(b) \in d r^{*}\right)\right)=\frac{\psi_{0}-b}{\sigma r^{*} \sqrt{r^{*}}} \phi\left(\frac{\psi_{0}-b+\mu r^{*}}{\sigma \sqrt{r^{*}}}\right) d r^{*} \quad \forall x \in \mathbb{R}_{+} \\
& \mathbb{P}\left(\text { Event }>\mathrm{b} \text { at } r^{*}\right)=\int_{b}^{\psi(0)} \underbrace{\mathbb{P}\left\{\tau(y) \in d r^{*}\right\}}_{\text {first-minimum }} \cdot \underbrace{\mathbb{P}\left\{\iota\left(r^{*}, q\right) \in d y\right\}}_{\text {last-minimum }} d y \cdot \mathbb{P}\left\{\iota\left(r^{*}, q\right) \in d y\right\}
\end{aligned}
$$

- As q gets smaller, $\tau(b) \in d r^{*}$ is constant and $\mathbb{P}\left\{\iota\left(r^{*}, q\right) \in d y\right\}$ is increasing.
- Thus, $\mathbb{P}\left(\right.$ Event $=\mathrm{b} \mid m^{*}(\psi)$ decreasing:

$$
\mathbb{P}\left(\text { Event }=\mathrm{b} \mid m^{*}(\psi)=r^{*}\right)=\frac{\mathbb{P}\left(\text { Event }=\mathrm{b} \text { at } m^{*}(\psi) \in d r^{*}\right)}{\mathbb{P}\left(\text { Event }=\mathrm{b} \text { at } m^{*}(\psi) \in d r^{*}\right)+\mathbb{P}\left(\text { Event }>\mathrm{b} \text { at } m^{*}(\psi) \in d r^{*}\right)}
$$

Equilibrium Existence

Change in expected outcome for a deviation to $r^{*}+a^{\prime}$ is given by:
Back to Existence

$$
\Delta\left(a^{\prime}, r^{*}, q\right)=\mathbb{P}\left(\text { Event }=\mathrm{b} \mid m^{*}(\psi)=r^{*}\right)\left(\mu a^{\prime}\right)+\mathbb{P}\left(\text { Event }>\mathrm{b} \mid m^{*}(\psi)=r^{*}\right) \mathbb{E}\left[M\left(a^{\prime}, q-r^{*}\right)\right]
$$

1. We showed that $\mathbb{P}\left(\right.$ Event $\left.=\mathrm{b} \mid m^{*}(\psi)=r^{*}\right)$ decreasing.
2. Moreover, $\mathbb{P}\left(\right.$ Event $\left.=\mathrm{b} \mid m^{*}(\psi)=r^{*}\right) \rightarrow 1$ for every as $r^{*} \rightarrow 0$.
3. We show that $\lim _{a \rightarrow 0^{+}} \frac{\partial}{\partial a} \mathbb{E}[M(a, q) \mid M(q, q)=c]=\infty$ for every q^{*}.

- If $q \rightarrow 0$, then $\max \left\{a, r^{*}\right\} \rightarrow 0$. So $\lim _{q \rightarrow 0} \Delta\left(a^{\prime}, r^{*}, q\right)>0$
- Thus, for some $\bar{q}>0$ we have that $\Delta\left(a^{\prime}, r^{*}, \bar{q}\right)$ for every $a^{\prime}, r^{*}, q<\bar{q}$.
- Note that $\bar{q} \neq q_{\max }^{b}: q_{\max }^{b}$ is the largest solution q is the counterpart for expected payoff.

Action Space v. Complexity

- We develop our analysis by varying the size of the action space instead of σ or α.

Back to Size of the Action Space

- Expert derives power from the complexity of the environment but not in direct proportion to complexity.
- Increased σ has conflicting effects.

1. Changes what the receiver infers from the recommendation

- Probability of Event $=b$ is non-monotone, and increasing on average.
- Makes it harder to support the equilibrium.

2. Changes the shape of receiver uncertainty about other actions.

- Expectations for deviations in Event $>b$ becomes more steep.
- Riskiness of deviations increase in both events.
- Makes it easier to sustain.
- Drift μ closer to 0 also decreases the probability of Event $>b$.
- Equilibrium is always easier to support.

Extensions: Robustness within BM

- Weakly concave utility with an unique maximum.
- The α threshold is not a constant - Everything else goes through.
- Very large bias: $b>\psi_{0}$.

Demonstration of Large Bias

- Interests are diametrically opposed, only equilibria are babbling.
- Negative Bias: $b<0$.
- In event $=b$, receiver knows there is an action to the left that gives his ideal.
- Actions to the left of the status quo.
- Recommendations to the left of status quo are easier to implement due to $\mu<0$.

Beyond Quadratic Utilities

Sketch of the Idea

Say that the receiver's utility is separable in mean $\mu(a)=\mathbb{E}[\psi(a)]$ and variance $\sigma(a)=\operatorname{Var}[\psi(a)]$:

$$
\mathbb{E}\left[u_{R}(a)\right]=v(\mu(a))-w(\sigma(a)) .
$$

The first and second order conditions for optimality are:

$$
\begin{aligned}
& \frac{d \mathbb{E}\left[u_{R}(a)\right]}{d a}=\mu^{\prime}(a) v^{\prime}(\mu(a))-\sigma^{\prime}(a) w(\sigma(a))=0 \\
& \frac{d^{2} \mathbb{E}\left[u_{R}(a)\right]}{d a^{2}} \mu^{\prime \prime}(a) v^{\prime}(\mu(a))+\mu^{\prime}(a)^{2} v^{\prime \prime}(\mu(a))-\sigma^{\prime \prime}(a) w^{\prime}(\sigma(a))-\sigma^{\prime}(x)^{2} w^{\prime \prime}(\sigma(x)) \leq 0 \\
& a=\mu^{-1}\left(\left(v^{\prime}\right)^{-1}\left(\frac{\sigma^{\prime}(a) v^{\prime}(\sigma(a))}{\mu^{\prime}(a)}\right)\right)
\end{aligned}
$$

The result follows from the first order condition under suitable conditions on the curvature of $\mu(a)$ and $\sigma(a)$. e.g. $\mu^{\prime}(x)<0, \mu^{\prime \prime}(x) \leq 0$ and $\sigma^{\prime}(x)>0, \sigma^{\prime \prime}(x)>0$ and $w^{\prime \prime}(x), v^{\prime \prime}(x) \leq 0$

Very Large Bias

- Interests are fully misaligned.

Back to Extensions

- If an outcome is better than the status quo for the sender is worse for the receiver.
- Only equilibria are babbling.

Negative Bias

- Event >0 works the same way.

Negative Bias

- Event >0 works the same way.
- In Event ≤ 0, now there is a profitable deviation is now to the left.

Negative Bias

- Event >0 works the same way.

Back to Extensions

- In Event ≤ 0, now there is a profitable deviation is now to the left.
- A similar upper bound like $q_{\max }^{b}$ can be constructed.

To the Left of Status quo

- If the recommendation is $r^{*}>0$:

To the Left of Status quo

- If the recommendation is $r^{*}>0$: It is the same problem and $q_{\max }^{b}$ works.

To the Left of Status quo

- If the recommendation is $r^{*}>0$: It is the same problem and $q_{\max }^{b}$ works.
- If the recommendation is $r^{*}<0$:

To the Left of Status quo

- If the recommendation is $r^{*}>0$: It is the same problem and $q_{\max }^{b}$ works.
- If the recommendation is $r^{*}<0$:
- Drift μ has the opposite effect and the Receiver IC is always satisfied when r^{*}.

Extensions: Examples Beyond BM

Conditions for Expert Power I

Suppose that the sender uses $m: \psi \rightarrow \mathcal{A}$ that precisely reveals his optimal action.

Conditions for Expert Power I

Suppose that the sender uses $m: \psi \rightarrow \mathcal{A}$ that precisely reveals his optimal action.

- Under what conditions does communication imperfectly reveal the state?

Conditions for Expert Power I

Suppose that the sender uses $m: \psi \rightarrow \mathcal{A}$ that precisely reveals his optimal action.

- Under what conditions does communication imperfectly reveal the state?

1. Partial Invertibility: Multiple states are consistent with recommendation.

$$
\left|m^{-1}(r)\right|>1 \quad \forall r \in \mathcal{A}
$$

Conditions for Expert Power I

Suppose that the sender uses $m: \psi \rightarrow \mathcal{A}$ that precisely reveals his optimal action.

- Under what conditions does communication imperfectly reveal the state?

1. Partial Invertibility: Multiple states are consistent with recommendation.

$$
\left|m^{-1}(r)\right|>1 \quad \forall r \in \mathcal{A}
$$

- When is the receiver has uncertainty have about his best response?

Conditions for Expert Power I

Suppose that the sender uses $m: \psi \rightarrow \mathcal{A}$ that precisely reveals his optimal action.

- Under what conditions does communication imperfectly reveal the state?

1. Partial Invertibility: Multiple states are consistent with recommendation.

$$
\left|m^{-1}(r)\right|>1 \quad \forall r \in \mathcal{A}
$$

- When is the receiver has uncertainty have about his best response?

2. Response Uncertainty: Receiver has distinct best responses to those states.

$$
\bigcap_{\psi^{\prime} \in m^{-1}(r)} \arg \max _{a \in \mathcal{A}} u^{R}\left(a, \psi^{\prime}\right)=\emptyset \quad \forall r \in \mathcal{A}
$$

Conditions for Expert Power I

Suppose that the sender uses $m: \psi \rightarrow \mathcal{A}$ that precisely reveals his optimal action.

- Under what conditions does communication imperfectly reveal the state?

1. Partial Invertibility: Multiple states are consistent with recommendation.

$$
\left|m^{-1}(r)\right|>1 \quad \forall r \in \mathcal{A}
$$

- When is the receiver has uncertainty have about his best response?

2. Response Uncertainty: Receiver has distinct best responses to those states.

$$
\bigcap_{\psi^{\prime} \in m^{-1}(r)} \arg \max _{a \in \mathcal{A}} u^{R}\left(a, \psi^{\prime}\right)=\emptyset \quad \forall r \in \mathcal{A}
$$

Conditions for Expert Power I

Suppose that the sender uses $m: \psi \rightarrow \mathcal{A}$ that precisely reveals his optimal action.

- Under what conditions does communication imperfectly reveal the state?

1. Partial Invertibility: Multiple states are consistent with recommendation.

$$
\left|m^{-1}(r)\right|>1 \quad \forall r \in \mathcal{A}
$$

- When is the receiver has uncertainty have about his best response?

2. Response Uncertainty: Receiver has distinct best responses to those states.

$$
\bigcap_{\psi^{\prime} \in m^{-1}(r)} \arg \max _{a \in \mathcal{A}} u^{R}\left(a, \psi^{\prime}\right)=\emptyset \quad \forall r \in \mathcal{A}
$$

- When does that lead the receiver to accept the sender's optimal action?

Conditions for Expert Power I

Suppose that the sender uses $m: \psi \rightarrow \mathcal{A}$ that precisely reveals his optimal action.

- Under what conditions does communication imperfectly reveal the state?

1. Partial Invertibility: Multiple states are consistent with recommendation.

$$
\left|m^{-1}(r)\right|>1 \quad \forall r \in \mathcal{A}
$$

- When is the receiver has uncertainty have about his best response?

2. Response Uncertainty: Receiver has distinct best responses to those states.

$$
\bigcap_{\psi^{\prime} \in m^{-1}(r)} \arg \max _{a \in \mathcal{A}} u^{R}\left(a, \psi^{\prime}\right)=\emptyset \quad \forall r \in \mathcal{A}
$$

- When does that lead the receiver to accept the sender's optimal action?

3. Recommendation Acceptance: Receiver's incentive compatibility is satisfied.

$$
r \in \arg \max _{a \in \mathcal{A}} \mathbb{E}\left[u^{R}(a, \psi) \mid \psi \in m^{-1}(r)\right] \quad \forall r \in m^{-1}(\Psi)
$$

Conditions for Expert Power II

1. Partial Invertibility: Multiple states are consistent with recommendation.
2. Response Uncertainty: Receiver has distinct best responses to those states.
3. Recommendation Acceptance: Receiver's incentive compatibility is satisfied.

Conditions for Expert Power II

1. Partial Invertibility: Multiple states are consistent with recommendation.
2. Response Uncertainty: Receiver has distinct best responses to those states.
3. Recommendation Acceptance: Receiver's incentive compatibility is satisfied.

- First-point strategy in Brownian Motion environment satisfies (1) and (2).
- First-point strategy also satisfies (3) if action space is narrow $\left(q<q_{\text {max }}^{b}\right)$.

Conditions for Expert Power II

1. Partial Invertibility: Multiple states are consistent with recommendation.
2. Response Uncertainty: Receiver has distinct best responses to those states.
3. Recommendation Acceptance: Receiver's incentive compatibility is satisfied.

- First-point strategy in Brownian Motion environment satisfies (1) and (2).
- First-point strategy also satisfies (3) if action space is narrow $\left(q<q_{\text {max }}^{b}\right)$.
- Efficient strategies in unknown bias models satisfy (1) and (2) but fail (3).

Conditions for Expert Power II

1. Partial Invertibility: Multiple states are consistent with recommendation.
2. Response Uncertainty: Receiver has distinct best responses to those states.
3. Recommendation Acceptance: Receiver's incentive compatibility is satisfied.

- First-point strategy in Brownian Motion environment satisfies (1) and (2).
- First-point strategy also satisfies (3) if action space is narrow $\left(q<q_{\max }^{b}\right)$.
- Efficient strategies in unknown bias models satisfy (1) and (2) but fail (3).
- Efficient strategies in canonical cheap talk fail (1).

Conditions for Expert Power II

1. Partial Invertibility: Multiple states are consistent with recommendation.
2. Response Uncertainty: Receiver has distinct best responses to those states.
3. Recommendation Acceptance: Receiver's incentive compatibility is satisfied.

- First-point strategy in Brownian Motion environment satisfies (1) and (2).
- First-point strategy also satisfies (3) if action space is narrow $\left(q<q_{\max }^{b}\right)$.
- Efficient strategies in unknown bias models satisfy (1) and (2) but fail (3).
- Efficient strategies in canonical cheap talk fail (1).
- Partition strategies in canonical cheap talk satisfy (1) and (2).
- Partition strategies also satisfy (3) if partitions are large enough.

Misalignment Without Directional Uncertainty

- For each $a \in \mathcal{A}=\mathbb{Z}$, there are two states ψ and ψ^{\prime} :
- $\psi(a)=b, \psi(a+1)=0$ and $\psi\left(a^{\prime}\right)=100 b \forall a^{\prime} \in \mathcal{A} \backslash\{a, a+1\}$.

Misalignment Without Directional Uncertainty

- For each $a \in \mathcal{A}=\mathbb{Z}$, there are two states ψ and ψ^{\prime} :
- $\psi(a)=b, \psi(a+1)=0$ and $\psi\left(a^{\prime}\right)=100 b \forall a^{\prime} \in \mathcal{A} \backslash\{a, a+1\}$.
- $\psi^{\prime}(a)=b, \psi^{\prime}(a+2)=0$ and $\psi^{\prime}\left(a^{\prime}\right)=100 b \forall a^{\prime} \in \mathcal{A} \backslash\{a, a+2\}$.

Misalignment Without Directional Uncertainty

- For each $a \in \mathcal{A}=\mathbb{Z}$, there are two states ψ and ψ^{\prime} :
- $\psi(a)=b, \psi(a+1)=0$ and $\psi\left(a^{\prime}\right)=100 b \forall a^{\prime} \in \mathcal{A} \backslash\{a, a+1\}$.
- $\psi^{\prime}(a)=b, \psi^{\prime}(a+2)=0$ and $\psi^{\prime}\left(a^{\prime}\right)=100 b \forall a^{\prime} \in \mathcal{A} \backslash\{a, a+2\}$.
- Efficient equilibrium exists if neither states dominate for any action.
- Receiver is never aligned with the sender and has no directional uncertainty.

Orstein-Uhlenbeck: Mean-Reversion

- The mapping is Ornstein-Uhlenbeck mean-reverting to $\psi(0)$.

Details of OU process

- Expected outcome always points toward $\psi(0)$.
- First-point equilibrium exists $\forall b \in[0, \psi(0))$ and $\forall q \in \mathbb{R}$.

Wiener State Space: Mean Reversion

- $\psi(a)$ is the solution to the stochastic differential equation:

$$
d \psi(a)=-\kappa(\psi(0)-\psi(a)) d a+\sigma d W(a)
$$

- κ is the mean-reversion coefficient, and σ is the volatility term.
- Environment has the same state space as the Brownian environment.
- Differs in how the states are translated into outcomes via the outcome mappings.
- Deviations to $a<r^{*}$ are worse for the receiver by the continuity of OU process.
- For deviations $a>r^{*}$:

$$
\begin{aligned}
\mathbb{E}\left[\psi(a) \mid m^{*}(\psi)=r^{*}\right] & =\underbrace{\psi(0)-\left(\psi(0)-\psi\left(r^{*}\right)\right) \underbrace{\exp \left(-\kappa\left(a-r^{*}\right)\right)}_{<1}}_{>\psi\left(r^{*}\right)} \\
\operatorname{Var}\left(\psi(a) \mid m^{*}(\psi)=r^{*}\right)= & \frac{\sigma^{2}}{2 \kappa}\left(1-\exp \left[-2 \kappa\left(a-r^{*}\right)\right]\right)
\end{aligned}
$$

Wiener State Space: Non-Markovian

- We can think of fractional BM as keeping the drift same and redefining the $\operatorname{Cov}\left(\psi(a), \psi\left(a^{\prime}\right)\right)$ by:

$$
\sigma^{2} \frac{1}{2}\left(|a|^{2 H}+\left|a^{\prime}\right|^{2 H}-\left|a-a^{\prime}\right|^{2 H}\right)
$$

- H is the Hurst index describes the raggedness of the resultant motion:
- If $H=0.5$ then the state is Wiener process;
- If $H>0.5$ then the increments of the process are positively correlated;
- If $H<0.5$ then the increments of the process are negatively correlated.
- H changes the shape of the variance: Linear, Convex or Concave.

Wiener State Space: Non-Gaussian

- $\psi(a)$ is geometric Brownian Motion, which is the solution to the differential equation:

$$
d \psi(a)=\mu \psi(a) d t+\sigma \psi(a) d W(a)
$$

- The solution is given by:

$$
\psi(a)=\psi_{0} \exp \left(\left(\mu-\frac{\sigma^{2}}{2}\right) t+\sigma W(a)\right) .
$$

- $\psi(a)$ is log-normally distributed with:

$$
\begin{aligned}
\mathbb{E}[\psi(a)] & =\left[\psi_{0} \exp (\mu a)\right] \\
\operatorname{Var}(\psi(a)) & =\psi_{0}^{2} \exp (2 \mu a)\left(\exp \left(\sigma^{2} a\right)-1\right)
\end{aligned}
$$

Geometric Brownian Motion trajectories

Wiener State Space: Discontinuous

- $\psi(a)=$ Wiener process $W(a)+$ compound Poisson process $Y(a)$:

$$
\psi(a)=\mu t+\sigma W(a)+Y(a)
$$

- If $Y(a) \geq 0$, then our techniques based on first hitting times directly apply.

Wiener State Space: Higher Dimensions

Figure: Brownian Sheet $\psi: X \times Y \rightarrow \mathbb{R}$.

Wiener State Space: More Knowledge

- Consider the Brownian Motion environment.

Back to Extensions

- But, the receiver begins knowing a second point action q where $\psi(q) \geq \psi(0)$.

Wiener State Space: More Knowledge

- Consider the Brownian Motion environment.
- But, the receiver begins knowing a second point action q where $\psi(q) \geq \psi(0)$.
- Similar to the OU process
- Easy to satisfy the first-point equilibrium.

