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Expertise in Practice

> In practice, experts often have power over decision makers.

» Division managers over the headquarters (Milgrom and Roberts, 1988),
» Realtors over homeowners (Levitt and Syverson, 2008),
» OBGYNs over patients (Gruber and Owings, 1996),

» Congressional committees over the floor (Gilligan and Krehbiel, 1987).
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» Realtors over homeowners (Levitt and Syverson, 2008),
» OBGYNs over patients (Gruber and Owings, 1996),

» Congressional committees over the floor (Gilligan and Krehbiel, 1987).

> “The power position of an expert is always overtowering.” — Weber (1922)
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Expertise in Models

> The economic models of expertise contrast with expertise in practice.

» Canonical cheap talk model of Crawford & Sobel (1982) has two key conclusions:

1. Communication is valuable, but it is necessarily inefficient.

2. The expert has no power — outcome is decision maker’s ideal in expectation.

= Expert would be better off if she can transfer her expertise to the decision maker.

» Enormous literature of applied models builds on Crawford and Sobel.

» Mismatch between models and practice - Why?
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Expertise in Models v. Practice

Outcome

Physician’s Ideal -

Treatment

Patient’s Ideal

r aj a,

» Crawford-Sobel: Relationship between treatments and outcomes is linear with known slope.

» Physician reveals ideal treatment — Patient inverts the mapping and learns own ideal treatment.

> Practice: Relationship between treatments and outcomes is highly unknown and complex.

» Physician reveals ideal treatment — Patient cannot invert the mapping and faces uncertainty.
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This Paper

> Strategic communication in complex environments where the relationship is non-invertible.

» We model the mappings from actions to outcomes as paths of Brownian Motion.
» The expert knows the outcome of every action.

» The decision maker knows the joint distribution of outcomes for each action.
» Equilibrium reverses the predictions of C-S:

1. Communication is Pareto efficient.

2. The expert has full power — the equilibrium outcome is equivalent to full delegation.
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Reconciling Theory with Practice

> We capture the decision making power of the expert.

» This power comes purely from their informational advantage. Is this the right explanation?

> “As a consequence of the information inequality, the patient must delegate to the physician much of his
freedom of choice.” — Kenneth Arrow (1963, p.964)

» Large information gaps are the source of expert power. (Weber, 1922; French and Raven, 1959).

> We show how large of an “information inequality” supports expert power by itself.
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Brownian Motion and Beyond

v

Why Brownian Motion? It is a tractable model with attractive properties.
» Parameterize how much is learned from the expert’s ideal action.

» Show how much learning is too much learning for supporting expert power.

» Brownian Motion, and its special features, are not necessary for expert power.

v

We provide examples of other environments and extract the essential ingredient for expert power.

v

A large ‘information inequality’ is the essential ingredient for expert power.

» Expert can reveal her most-preferred action without eliminating all uncertainty.
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1. Brownian Motion Model.

2. Results

» Decision making without the Expert.

» Main Result: Decision making with the Expert.

3. Extensions: Brownian Motion and Beyond.



The Model

> Players: Sender (the expert) and receiver (the decision maker).

> Actions and Messages: A = [0, g] for g € Rand r € M.

v

Outcomes: ¢ : A — R maps actions to outcomes.

v

Preferences: u°(a) = —(¢(a) — b)? and u®(a) = —(a)?.

» Results hold for weakly concave u*(-) and any u°(-) maximized at b.
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Timing of the Game

Sender observes

Y: A— R.

Sender sends

message 7 € M.

Receiver observes r.
Updates beliefs.

~

Receiver picks a € A.
Payoffs realize.
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Timing of the Game

Sender observes

Y: A— R.

» Solution Concept:

Sender sends
message 7 € M.

Perfect Bayesian Equilibrium.

Receiver observes r.
Updates beliefs.

~

Receiver picks a € A.
Payoffs realize.
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Complex Environments in A Picture

outcome
P(a) = o + pa+oW(a)
action
» The mapping ¢ : A — R is given by the path of a Brownian Motion.

> Expert knows the realized mapping. Receiver does not know the realized mapping.
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> Receiver knows mapping is Brownian Motion with parameters: v, drift ;, and scale o.

» Receiver Beliefs: ¢/(a) ~ N'(¢y + pa,c’a) and Cov(¢(a),(a’)) = c* min{a, d'}.
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> Receiver knows mapping is Brownian Motion with parameters: vy, drift 1, and scale o.
» Receiver Beliefs: ¢/(a) ~ N (¢ + pa,c”a) and Cov(¢(a),1(a’)) = 0” min{a, d'}.
» Learning one point in the mapping # Learning the whole mapping.
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Simple v. Complex Environments

> Key Difference: How much the receiver learns from the expert’s most preferred action.

v

This is captured with the “informational inequality” about ¢ : A — R.

v

Simple Environments: Relationship is known and outcomes are perfectly correlated.

» tp(a) = 0 — awhere 0 € R is the private information of the expert.

Pla)=b=0=b+a=(d)=(b+a) —d

v

Complex Environments: Relationship is unknown and outcomes are imperfectly correlated.

» t(-) is a Brownian Motion with parameters y and o:

@) = b= (at x) ~ b+ N(ux, o)
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1. Brownian Motion Model.

2. Results

» Decision making without the Expert.

» Main Result: Decision making with the Expert.

3. Extensions: Brownian Motion and Beyond.



Decision Making Without the Expert
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> Decisions without the expert involve a tradeoff between risk and return.
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Decision Making Without the Expert
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> Decisions without the expert involve a tradeoff between risk and return.

> a > 0 improves the outcome by pa (up until 0), but increases variance by o?a.

> We call half of this ratio v = - as the risk complexity of the environment.

2|p]
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Lemma 1: Without additional information, receiver picks a™ based on the risk complexity « and the

status-quo outcome y:

(i) If o« < 1)y receiver chooses a™ such that E[y (a™)] = «,
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Lemma 1: Without additional information, receiver picks a™ based on the risk complexity « and the
status-quo outcome y:

(i) If v < 1y receiver chooses a™ such that E[¢ (a™)] = «,

(if) If & > 1)y then the receiver chooses a" = 0.
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1. The Model: Introducing Complex Environments.

2. Results

» Decision making without the Expert.

» Main Result: Decision making with the Expert.

3. Extensions: Brownian Motion and Beyond.



Decision Making with the Expert

> We introduce the sender (expert) back into the game.
» The sender observes the realized outcomes ¢(-) and recommends an action r € A.

» The receiver observes the recommendation and makes a choice a € A.
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Decision Making with the Expert

> We introduce the sender (expert) back into the game.
» The sender observes the realized outcomes ¢(-) and recommends an action r € A.

» The receiver observes the recommendation and makes a choice a € A.

» How much power does the sender have over the final decision?

» Full power if she can reveal her ideal action while keeping the receiver uncertain enough.
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The Sender’s Communication Strategy

> First-point strategy: Sender recommends the first of her optimal actions.

m*(¢) := min {a: a € argmax u’(d | w)} .
aG[O,q] aeA
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The Sender’s Communication Strategy

> First-point strategy: Sender recommends the first of her optimal actions.

m*(¢) := min {a: a € argmax u’(d | w)} .
aG[O,q] aeA

> First-point equilibria: Sender uses the first-point strategy and the receiver accepts it.
» Sender’s incentive compatibility is immediate, the receiver’s incentive compatibility is subtle...

» What does the the receiver learn from the recommendation about the path?
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The Receiver’s Inference Problem
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The Receiver’s Inference Problem

N
outcome

¥(0)

1. Event = b: Recommendation r* has outcome ¢ (r*) = b.

» r* is the first-minimum.

» No informational spillover to the right beyond ¢)(r*) = b — Beliefs are neutral.

 — Sk SN
r = action
L
Event =b

Details for Event=b

Details for Beliefs
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The Receiver’s Inference Problem
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2. Event > b: Set of paths where t(r*) > b.

Details for Event>b
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The Receiver’s Inference Problem
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outcome

Event >b
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r action

2. Event > b: Set of paths where ¢ (r*) > b.

» r* is the first-minimum. And r* is also the last-minimum.

Details for Event>b
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The Receiver’s Inference Problem

outcome |
Event >b
¥(0)
e — -
0 . i,
r action
2. Event > b: Set of paths where ¢ (r*) > b.

» r* is the first-minimum. And r* is also the last-minimum.

> Beliefs to the right are not neutral — Formally they follow a Brownian Meander process.
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The Receiver’s Inference Problem

outcome

Event >b

action

Event =b

» Recommendation reveals precisely the sender’s optimal action but imprecisely its outcome.

> Receiver forms posterior over these events using the Bayes’ rule.
> A new identity: The joint distribution of the hitting time and the location of the minimum.

15/31



Efficient Cheap Talk

Theorem 1. The first-point equilibrium exists if and only if g < ¢;***:

(i) The misalignment is small compared to the risk complexity:

2
If0<b<0—=ozthenq§,nax:oo.
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» Event > b = Receiver and sender have aligned action preferences.
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The Receiver’s Optimal Response: b < «

outcome
Event >b
¥(0)
UZ
o = m R
b P
q
0 .
action
Event =b

» Event > b = Receiver and sender have aligned action preferences.
» Event = b = Receiver and sender have misaligned action preferences.

> Logic of the ‘no expert’ result applies for deviations to right of the recommendation.
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Efficient Cheap Talk

max,

Theorem 1. The first-point equilibrium exists if and only if g < ¢;***:

(i) The misalignment is small compared to the risk complexity:

2
If0<b<g—=athean,naxzoo.

2|l

(ii) Or if the action space is not too large:

0_2

If¢0>b>2

max

| |:athenqb eR4y.
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The Receiver’s Optimal Response: b > «

outcome

¥(0)

Event >b

» For b > a, the receiver faces a trade-off:
» In Event >b the receiver’s best response is a = r*.

» In Event =b the receiver’s best response is a* such that E[¢)(a*)] = a.

action
Event =b

» Efficient cheap talk requires the receiver to choose exactly r* and nothing in between.
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Equilibrium Dominance

outcome
Event >b

¥(0)

action
Event =b

Before showing existence, we first explain how action space influences the receivers inference problem.
Lemma 2: If the first-point equilibrium exists for A = [0, g], then it exists for A" = [0, ¢'| whenever ¢’ < q.
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Equilibrium Dominance
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Equilibrium Dominance

outcome

¥(0)

* r action

> Same first-minimum and weaker last-minimum requirement as g — ¢'.

» No paths are eliminated as ¢ — ¢’. But paths are added to Event >bas ¢ — ¢'.

= Probability of Event > b is decreasing in gq.
20/31



Equilibrium Existence

outcome

¥(0)

» Lemma 3: The first-point equilibrium exists for some A = [0, g] with g > 0.

action
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Equilibrium Existence
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» If g is not too large, the probability of Event > b is greater than Event = b.

> Moreover, if g is not too large the Brownian Meander dominates in expectation.
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Equilibrium Existence

N

outcome 1
Event >b
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r* T action
Event =b

> If g is not too large, the probability of Event > b is greater than Event = b.

S

> Moreover, if g is not too large the Brownian Meander dominates in expectation.

» Equilibrium does not rely on risk aversion, although it makes achieving it easier.
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Efficient Cheap Talk

Theorem 1. The first-point equilibrium exists if and only if one of the following holds:
(i) Risk complexity is high and the expert’s recommendation is very hard to invert.
o2

h< ——
2|

(ii) The action space is not too large and there is sufficient action alignment with the expert.

A =10, g] with g < ¢;"**.
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Comparative Statics I

How does the size of largest action space g;*** change with the primitives of the environment?

C1: gy*** is decreasing in b for b > a.

» Less likely to be ‘aligned’ (Event > b), and incremental gains are more attractive.

C2: g"™* is increasing in p.

» More likely to be ‘aligned’ (Event > b), and incremental gains are less attractive.

Increased o has conflicting effects.

Detailed effect of o

» Our simulations suggests that g;'** is generally increasing in o > 0.
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Comparative Statics II

We also look for comparative statics for welfare within the first-point equilibrium (valid for g < g}'*¥).

C3: Both players utility strictly increase in gq.
» Wider action space = Path more likely to cross b = Both players better off.

C4: Receiver utility strictly decreases and sender utility strictly increases in b.

» Larger bias = Path more likely to cross b & Equilibrium becomes worse for receiver (> b).

C5: Expected equilibrium outcome approaches to b as 0 — oc.

» Very complex issues = More likely to cross b & Receiver doesn’t override = Both better off.

24/31
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Other Efficient Equilibria

Proposition 1: The only efficient equilibria are sender optimal.

» Efficient equilibrium = Equilibrium action distribution have full support.
» If not, then an open set S C A is omitted.
= DPositive probability that the v/(+) attains a minimum weakly above b at some a € S.

= Recommending the minimum instead improves the payoff for both players.

» Full support action distribution = Sender recommends own most preferred action.
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1. The Model: Introducing Complex Environments.

2. Results

» Decision making without the Expert.

» Main Result: Decision making with the Expert.

3. Extensions: Brownian Motion and Beyond.
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Delegating v. Communicating?

Question: Should the principal of an organization hire an expert to do a task or to get advice?

> Simple environments: There is a trade-off between information and control. (Dessein, 2002)
> Complex environments: If ¢ < ¢;*** they are equivalent - either way control is lost.

Question: What if g > ¢;"**?

max

> Receiver can commit to taking actions from [0, ¢;***] to facilitate efficient communication.

> But it is better for him to delegate full decision making power.

» Restriction to [0, g)"**] creates action-alignment by making both players worse off.

26/31
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Beyond Brownian Motion

» Brownian Motion is a tractable setup to illustrate how experts derive power in practice.

» Sender optimal and efficient cheap talk can be supported in other environments.
» Action-alignment: The receiver and sender can have different ideal actions for every state.
» Distribution: Joint distribution can be non-gaussian, non-markov or have dependent increments.

» Action/State Space: Discrete, continuum, or higher dimensional. Also they can be isomorphic.

» What is the common feature then? Expert advice is non-invertible.

Expert reveals her own optimal action 7% Decision maker learns his optimal action.

27/31



Minimally Complex Extension of Crawford-Sobel

outcome

Y'(a)=(b—r")+a

action

Pla)=(b+r*)—a

> Outcome Mapping: ¢(a) = 1 + a or ¢(a) = 1hy — a with 1py € R.
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Minimally Complex Extension of Crawford-Sobel

outcome

V(@ =(b=r)+a

action

Pla)=(b+r*)—a

> Outcome Mapping: ¢(a) = 1 + a or ¢(a) = 1hy — a with 1py € R.

» Efficient equilibrium exists if and only if two states are equally likely.

> Players always have different optimal actions. Receiver faces directional uncertainty.

28/31
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Expert Advice in the Long-run

Question: How does the expert power change in long-run relationships?

» Decision maker learns the relationship between actions and outcomes over time.
> Expert can’t use her information efficiently - communicates inefficiently to keep the receiver uncertain.

» Decision maker’s ability to learn can make communication so inefficient that she becomes worse off
compared to single-period efficient communication.

20/31



Literature Review

v

Cheap Talk (Crawford and Sobel, 1982).

» Invertible. Equilibrium: Expert sacrifices power to make recommendations non-invertible.

v

Bayesian Persuasion (Kamenica and Gentzkow, 2011).

» Commitment makes recommendation non-invertible. We get sender-optimal without commitment.

v

Unknown bias (Morgan and Stocken, 2003).

» Non-invertible, but low residual uncertainty = Equilibria are generally inefficient.

v

Discrete and Independent Actions (Aghion and Tirole, 1997)

» No informational spillover.

» Brownian Motion (Callander, 2008; Callander, Lambert, Matouschek, 2021; Dall’Ara, 2023).

» We study non-invertibility broadly, and how sender can shape information spillover.
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Conclusion

v

In practice experts are “overtowering. In models they have no power and communication is inefficient.

v

We develop a novel and comprehensive framework that captures expert-power in practice.

v

When the decision maker faces large “information inequality” the canonical results are reversed:

1. Experts have full power — they can implement her optimal action in equilibrium.

2. Communication is efficient.

v

Expert power comes from how much information remains private after the recommendation.

31/31



outcome
Event >b

¥(0)

action

Event =b

Thank You!



Extra Slides



States and Beliefs

» 1 : A— Rand ¥ is the set of all 2.

> It can be also thought as if ¢/(-) is a known function of a random variable 6 (with underlying probability
triple (€2, F,w)) privately observed by the sender.

> State is # and state space is f € ©.

> Receiver prior belief: w(-) over ©

» eg. O = [0,1] and w is the uniform distribution.

> eg. 0 = C[0, g] and w is the Wiener measure.
> We refer to the induced beliefs about 1)(-) instead of w.
We call w(- | -), a(+), m(-) a Perfect Bayesian Equilibrium if
1. w(¢ | r € m(v))) is obtained via Bayes’ rule whenever possible,

2. a(r) € argmaxy e Elug(d,v) | w(t | r € m())] for every r € M,

3. m(v) € argmax, e us(a(r’), ) for every ¢ € .
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Simple Environments

v

Players: Sender and Receiver.

v

Actions: A = Ry.

v

Outcomes: ¥(a) = 6 — a common knowledge

v

Sender’s private information: realized 6.

> Receiver’s prior: § ~ 7 C R,

v

Payoffs: u*(a) = —(¢(a) — b)* = —(0 — a— b)*, u*(a) = —(¥(a))* = = (0 — a)”.
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Simple Environments: Equilibrium

outcome W a) =0—a
0l w(@) = ~((@)* = =(0 - )’
N w(a) = ~((@) = b)? = (0 —a— b)’
’ -::1-\.\.-::::_:\. ................. b
Oy | o \\\\ \\\\
0, \2\\ § ’;2\\\\ _ ';3\‘\\ ] action

» All equilibria are partitional: m*(0) = r; if and only if 6; € [0;_1, 0;].

> Sender incentive compatibility limits the number of partitions.

> If partitions are too small, types at the boundary are too close to each other.

Back to Simple Environments
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Complex Environments

v

Players: Sender and Receiver.

v

Actions: A = Ry.

v

Outcomes:t)(a) = 1y + pa+ o W(a).

> The parameters 1),  and o common knowledge.

v

Formally state is W (a) and state space is C[0, g].

v

Sender’s private information: The realized path ¢ (a).

v

Receiver prior belief: w(-) over C[0, g] given by the Wiener measure.

> We generally refer to the induced beliefs about (+) instead of W(-).
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No Expert — Proof

Proof of Lemma 1

By the mean-variance representation of quadratic utility, the receiver’s expected utility is:

Elup(a)] = — [¢ (0) + ua]* — o’a.

The first and second order conditions for optimality are:

dE[ug(a
Pna)] _ aufy (0) + pal - o
d’E[ug(a)] 2
——= = 2u° <0.
da® B>
The result follows from the first order condition. |
> We get a similar result for other weakly concave utility.

> But « is no longer a constant threshold.
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Probabilities of Event = b

> We can define Event= b using the hitting “action” (time).

» First hitting action: 7(x) := inf{a € [0, q] | ¥(a) = x}.

» Probability of the path first-hitting b < 1)y:

P(Event = bat a) = P(7(b) € da) = o — b¢ (1/)0 — b+ pa

d R,.
oa\/?z U\/a>an€+
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Probabilities of Event > b

» First hitting action: 7(x) := inf{a € [0, q] | ¥(a) = x}.

» Minimum of the path ¢(w, x): t(w, x) = inf{¢(a) | a € [w, x]}.

» P(Event >b at m* = [, "P(r(y) € dr*,u(q) € dy)dy.
outcome
Event > b
¥(0)
y ___________ ———— @ T
ploo o Tyed™ i
0 Lq) € dy
r* action
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Probabilities of Event > b
» First hitting action: 7(x) := inf{a € [0, ¢ | ¥(a) = x}.
» Minimum of the path ¢(w, x): t(w, x) = inf{¢(a) | a € [w, x]}.
» P(Event >b at m* = [, "P(r(y) € dr*,u(q) € dy)dy.

» Using the Strong Markov Property of W (a):

¥(0)
P(Event >b at m*(¢)) = r") = /b P{r(y) e dr*} - P{u(r",q) € dy}dy

first-minimum last-minimum
outcome
Event > b
¥(0)
Voo STETTTTTTS SULEERERRE
7(y) € dr*
b ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
S
0 g—r") edy
r* action

Back to Event>b
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Bayes Updating

» We are interested in P(Event =b | m*(¢)) = r*).

» Conditioning event m* (1)) € dr* is the (disjoint) union of two events:

1. Event =b at m™ (1)),
2. Event>b at m* (¢).

» Regular conditional probability can be obtained as follows:

P(Event =b at m* () € dr*)
P(m*(¢) = r*)
P(Event =b at m*(¢)) € dr*)

P(Event =b | m*(¢) = r*) =

P(Event =b at m*(¢)) € dr*) + P(Event>b at m*(¢)) € dr*)
P(7(b) € dr*)
P(r(b) € dr*) + [;"" P((y) € dr*)P(u(r*, q) € dy)dy

> Densities are well defined everywhere r* € (0, g|.
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Brownian Motion: Conditional Beliefs

outcome L '? VLT Cov(i(a),(d')) = 0* min{a, a'}
—"’ﬂ : §~~~~
(] 2 ' Ssel
! S~ drift p
7} S A S M
1
1
0 : —
rr action
> The beliefs conditional on ¢ (r*) = y are:
Yo+ % (y—vo) fa<r
Elv(a)|(r*) = y] = r
(@) =y {yﬂm sl

PRl BT

Var[y(a)[¢(r*) = y] = { i

o*a—r*) ifa>r*
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Brownian Meander I

x@]

—y _______________________
> Rescale such that X(a) = ¥)(a) — ¢ = pa+ o W(a).

P(X(0) € de | 1fg) > —y) = LMD E 1D 2 =)

P(e(q) > ~v)
_ P(X(a) € dx,u(a) > —y,(q—a) > —(x+))
P(e(q) > —y)

B(X(a) € dx | i(q) > —y) = LX) € do L(a)PZ(L;;;)E(L_(Z)_ 92 —(x+y)




Brownian Meander II

X(a)

Ox et ated - \ueteteleiebe vy

-
—y -----------------------
» Looking at lim_,_,o- P(X(a) € dx | 1(q) > —y):
2 —x x —a x —x —a
e L1 ()0 (25) (0 (22) o (29)0 (55,
- L% (e ()05 )

> Details of the weak convergence follows from standard arguments.
> See Durrett et al. (1977) and Iafrate and Orsingher (2020) for the details.

11/30



Brownian Meander II

X(a)
Ox - -WJ“ ----------------
-
—y _______________________
> Looking at lim_,_,- P(X(a) € dx | i(q) > —):
_ a5 o (57) (0 (RAEP) —ow (H3) @ (545
P(M(a, q) € dx) = s 2 (Mﬁexp(g;) 5 ) dx.

» It coincides with equation (1.4) in Iafrate and Orsingher (2020) when o = 1.

» It coincides with Rayleigh distribution whenever ;4 = 0,0 = 1 and a = q.
11/30



Moments of Brownian Meander

> We characterize the distribution of M(a, q) given its terminal value.

> Special case of 4t = 0 and o = 1 is analyzed in Devroye (2010) and Riedel (2021).
» This is obtained by the limit: lim_,_,,- P(X(a) € dx | X(q) = ¢,1(q) > —y):

*q/q X~y Xty

P(M(a, q) € dx | M(q,q) = c) = ¢ B —
1 44 cay/a\/q — ao \/g\/ma \/g\/ma

*g—a)+ 7 cVa —c%a a(q—a
E{M(a, )M(g.q) = d = qerf<g >+exp(2q(q_a)az) 2alg—a)

3(g—a)a_, s

E[M?(a,q) | M(q,q) = ] = . 7

» It follows that that lim, o+ 2-E[M(a, q)|M(q, q) = ¢] = cc.
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Equilibrium Dominance

» First hitting action: 7(x) := inf{a € [0, q] | ¥(a) = x}.

» Minimum of the path ¢(w, x): t(w, x) = inf{¢(a) | a € [w, x|}

» We have the probabilities given by:

P(Event = bat r*) = P(7(b) € dr")) = Yo—b (z/Jo — b+ pur*

dr* VxeR
ar*\/F 0\/7* > +

$(0)
P(Event >b at r*) :/b P{r(y) € dr*} -P{c(r", q) € dy} dy.P{.(r", q) € dy}

first-minimum last-minimum

> As g gets smaller, 7(b) € dr* is constant and P{.(r*, q) € dy} is increasing.

v

Thus, P(Event =b | m*(¢) decreasing:

P(Event =b at m*(¢)) € dr*)

P(Event =b [ m"(y) = 1) = P(Event =b at m*(¢)) € dr*) + P(Event>b at m* () € dr*)’
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Equilibrium Existence

Change in expected outcome for a deviation to r* + d is given by:
A(d,r*, q) = P(Event =b | m*(vp) = r*)(ud’) + P(Event >b | m* () = r*)E[M(d’, ¢ — r*)]

—_

. We showed that P(Event =b | m*(¢)) = r*) decreasing.

N

Moreover, P(Event =b | m*(¢)) = r*) — 1 for every as r* — 0.

w

. We show that lim,_,+ 2E[M(a, q)|M(q, q) = ] = oo for every g*.

v

If ¢ — 0, then max{a, r*} — 0. So limy_,o A(d’,r*,q) > 0

v

Thus, for some g > 0 we have that A(d’, r*, g) for every d’, r*, g < g.

v

Note that § # ¢%,..: ¢5.ax is the largest solution q is the counterpart for expected payoff.
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Action Space v. Complexity
> We develop our analysis by varying the size of the action space instead of o or .

> Expert derives power from the complexity of the environment but not in direct proportion to
complexity.

» Increased o has conflicting effects.

1. Changes what the receiver infers from the recommendation

> Probability of Event= b is non-monotone, and increasing on average.

» Makes it harder to support the equilibrium.
2. Changes the shape of receiver uncertainty about other actions.
» Expectations for deviations in Event > b becomes more steep.
> Riskiness of deviations increase in both events.
> Makes it easier to sustain.
» Drift 1 closer to 0 also decreases the probability of Event > b.

» Equilibrium is always easier to support.
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Extensions: Robustness within BM



Extensions within Brownian Motion

» Weakly concave utility with an unique maximum.
» The « threshold is not a constant — Everything else goes through.

> Very large bias: b > 1.
» Interests are diametrically opposed, only equilibria are babbling.

> Negative Bias: b < 0.
> In event = b, receiver knows there is an action to the left that gives his ideal.

» Actions t() the left Of the Status quo. Demonstration of Actions to the Left

» Recommendations to the left of status quo are easier to implement due to pz < 0.
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Beyond Quadratic Utilities

Sketch of the Idea

Say that the receiver’s utility is separable in mean u(a) = E[¢(a)] and variance o(a) = Var[y)(a)]:
E[ur(a)] = v(u(a)) — w(o(a)).
The first and second order conditions for optimality are:

D] _ 10 (@) - o' (@) wio(a) =0

PR 101/ (@) + (@ () — o (@) (@) — o' (o (0 () < 0

(o ()

The result follows from the first order condition under suitable conditions on the curvature of x(a) and o(a).
e.g. u'(x) <0,u"(x) <0and o’(x) >0, 0" (x) > 0and w’(x),v'(x) <0 |
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Very Large Bias

outcome

/] e T L ak e et

=~ drift p

> Interests are fully misaligned.

» If an outcome is better than the status quo for the sender is worse for the receiver.

> Only equilibria are babbling.
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Negative Bias

outcome

Event>0

S

r action

» Event > 0 works the same way.
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Negative Bias

outcome

» Event > 0 works the same way.

________ -
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» In Event < 0, now there is a profitable deviation is now to the left.

» A similar upper bound like g%, can be constructed.
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To the Left of Status quo

~
outcome

S L S ———
0 N
rr action
» If the recommendation is r* > 0:
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To the Left of Status quo

outcome
-’ “ " e
’
4
,
,
’
1
1
b4
bm==-=mm-mpmmmmmmmmmmmmmmmmm e s SRl
HINES
i .
i ~
: N
: <
H S
0 " IS p
r action

» If the recommendation is r* > 0: It is the same problem and ¢?,, works.
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To the Left of Status quo
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action

» If the recommendation is r* > 0: It is the same problem and ¢?,, works.
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To the Left of Status quo

outcome

» If the recommendation is r* > 0: It is the same problem and ¢,

» If the recommendation is r* < 0:

ax

works.

action

> Drift ;1 has the opposite effect and the Receiver IC is always satisfied when r*.
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Extensions: Examples Beyond BM



Conditions for Expert Power I

Suppose that the sender uses m : 1) — A that precisely reveals his optimal action.
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Conditions for Expert Power I

Suppose that the sender uses m : 1) — A that precisely reveals his optimal action.
» Under what conditions does communication imperfectly reveal the state?
1. Partial Invertibility: Multiple states are consistent with recommendation.
Im™'(r)| >1 Vre A
> When is the receiver has uncertainty have about his best response?

2. Response Uncertainty: Receiver has distinct best responses to those states.

ﬂ arg max Ha,)=0 Vre A
Y em1(r)

» When does that lead the receiver to accept the sender’s optimal action?
3. Recommendation Acceptance: Receiver’s incentive compatibility is satisfied.

re argranea;‘(]E[uR(a7 ) | em (r)] Vrem (D)

Back to Extensions
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Conditions for Expert Power II

1. Partial Invertibility: Multiple states are consistent with recommendation.
2. Response Uncertainty: Receiver has distinct best responses to those states.
3. Recommendation Acceptance: Receiver’s incentive compatibility is satisfied.

> First-point strategy in Brownian Motion environment satisfies (1) and (2).

» First-point strategy also satisfies (3) if action space is narrow (q < ¢%,,.).
» Efficient strategies in unknown bias models satisfy (1) and (2) but fail (3).

> Efficient strategies in canonical cheap talk fail (1).
> Partition strategies in canonical cheap talk satisfy (1) and (2).

> Partition strategies also satisfy (3) if partitions are large enough.
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Misalignment Without Directional Uncertainty

outcome

» For each a € A = Z, there are two states ) and '

» (a) = b,(a+1) =0and ¥(d') = 1000 Vd' € A\ {a,a+ 1}.
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» For each a € A = Z, there are two states ) and '

» Y(a) =b,Y(a+1) =0and(d') = 100b Va' € A\ {a,a+ 1}.
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Misalignment Without Directional Uncertainty

outcome

» For each a € A = Z, there are two states 1) and 1)
» (a) = b,(a+1) =0and ¥(d') = 1000 Vd' € A\ {a,a+ 1}.
» ¢'(a) = b9’ (a+2) =0and ¢’ (d') = 100b Va' € A\ {a,a+ 2}.
» Efficient equilibrium exists if neither states dominate for any action.

> Receiver is never aligned with the sender and has no directional uncertainty.
23/30



Orstein-Uhlenbeck: Mean-Reversion

outcome /V ”m

$(0)9

» The mapping is Ornstein-Uhlenbeck mean-reverting to 1(0).
» Expected outcome always points toward 1(0).

» First-point equilibrium exists Vb € [0,1(0)) and Vg € R.

action

Details of OU process
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Wiener State Space: Mean Reversion

> 1)(a) is the solution to the stochastic differential equation:
di(a) = —1 (1(0) — ¥(a)) da+ rdW(a)

> & is the mean-reversion coefficient, and o is the volatility term.

» Environment has the same state space as the Brownian environment.

> Differs in how the states are translated into outcomes via the outcome mappings.

> Deviations to a < r* are worse for the receiver by the continuity of OU process.

» For deviations a > r*:

Elp(a) | m*(¢) = r*] = ¢(0) — (¥(0) — ¢ (r")) exp(—r(a — "))

>p(r*)

Var(v(a) | m(1) = ') = L (1 — expl-2n(a— 1))
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Wiener State Space: Non-Markovian

» We can think of fractional BM as keeping the drift same and
redefining the Cov (¢(a), v (d’)) by:

2

o (|a|2H + |a/|2H _ |a _ a/‘ZH)

Do | =

» H is the Hurst index describes the raggedness of the
resultant motion:
» If H = 0.5 then the state is Wiener process;

» If H > 0.5 then the increments of the process are positively
correlated;

» If H < 0.5 then the increments of the process are negatively
correlated.

» H changes the shape of the variance: Linear, Convex or
Concave.
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Wiener State Space: Non-Gaussian

> )(a) is geometric Brownian Motion, which is the solution
to the differential equation:

di(a) = pip(a)dt + oip(a)dW (a).

» The solution is given by:

o2
Y(a) = Yy exp ((u - 2) t+ UW(CL)) .
> t(a) is log-normally distributed with:

E(a)] = [ exp(ua)]
Var((a)) = 0 exp(2ua) (exp(o’a) - 1).

Back to Extensions

Geometric Brownian Motion trajectories

timeline
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Wiener State Space: Discontinuous

outcome |
: .m.\’w M\m
W ool ) ctig
> ¢)(a) = Wiener process W (a) + compound Poisson process Y(a):

¥(a) = ut +oW(a) + Y(a)

> If Y(a) > 0, then our techniques based on first hitting times directly apply.
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Wiener State Space: Higher Dimensions

Back to Extensions
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Figure: Brownian Sheet ¢ : X X Y — R.
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Wiener State Space: More Knowledge

outcome (»W\!\
L
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0
» Consider the Brownian Motion environment.

> But, the receiver begins knowing a second point action g where 1(q) > 1(0).
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Wiener State Space: More Knowledge
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Consider the Brownian Motion environment.
But, the receiver begins knowing a second point action g where ¥(q) > 1(0).

Similar to the OU process
Easy to satisfy the first-point equilibrium.

Back to Extensions
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