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Expertise in Practice

I In practice, experts often have power over decision makers.

I Division managers over the headquarters (Milgrom and Roberts, 1988),
I Realtors over homeowners (Levitt and Syverson, 2008),
I OBGYNs over patients (Gruber and Owings, 1996),
I Congressional committees over the �oor (Gilligan and Krehbiel, 1987).

I “The power position of an expert is always overtowering.” – Weber (1922)
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Expertise in Models

I The economic models of expertise contrast with expertise in practice.

I Canonical cheap talk model of Crawford & Sobel (1982) has two key conclusions:

1. Communication is valuable, but it is necessarily ine�cient.
2. The expert has no power — outcome is decision maker’s ideal in expectation.

⇒ Expert would be better o� if she can transfer her expertise to the decision maker.

I Enormous literature of applied models builds on Crawford and Sobel.

I Mismatch between models and practice – Why?
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Expertise in Models v. Practice

Treatment

I Crawford-Sobel: Relationship between treatments and outcomes is linear with known slope.

I Physician reveals ideal treatment

→ Patient inverts the mapping and learns own ideal treatment.

I Practice: Relationship between treatments and outcomes is highly unknown and complex.

I Physician reveals ideal treatment→ Patient cannot invert the mapping and faces uncertainty.
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This Paper

I Strategic communication in complex environments where the relationship is non-invertible.

I We model the mappings from actions to outcomes as paths of Brownian Motion.
I The expert knows the outcome of every action.
I The decision maker knows the joint distribution of outcomes for each action.

I Equilibrium reverses the predictions of C-S:
1. Communication is Pareto e�cient.

2. The expert has full power — the equilibrium outcome is equivalent to full delegation.
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Reconciling Theory with Practice

I We capture the decision making power of the expert.

I This power comes purely from their informational advantage. Is this the right explanation?

I “As a consequence of the information inequality, the patient must delegate to the physician much of his
freedom of choice.” — Kenneth Arrow (1963, p.964)

I Large information gaps are the source of expert power. (Weber, 1922; French and Raven, 1959).

I We show how large of an “information inequality” supports expert power by itself.

5/31



Reconciling Theory with Practice

I We capture the decision making power of the expert.

I This power comes purely from their informational advantage.

Is this the right explanation?

I “As a consequence of the information inequality, the patient must delegate to the physician much of his
freedom of choice.” — Kenneth Arrow (1963, p.964)

I Large information gaps are the source of expert power. (Weber, 1922; French and Raven, 1959).

I We show how large of an “information inequality” supports expert power by itself.

5/31



Reconciling Theory with Practice

I We capture the decision making power of the expert.

I This power comes purely from their informational advantage. Is this the right explanation?

I “As a consequence of the information inequality, the patient must delegate to the physician much of his
freedom of choice.” — Kenneth Arrow (1963, p.964)

I Large information gaps are the source of expert power. (Weber, 1922; French and Raven, 1959).

I We show how large of an “information inequality” supports expert power by itself.

5/31



Reconciling Theory with Practice

I We capture the decision making power of the expert.

I This power comes purely from their informational advantage. Is this the right explanation?

I “As a consequence of the information inequality, the patient must delegate to the physician much of his
freedom of choice.” — Kenneth Arrow (1963, p.964)

I Large information gaps are the source of expert power. (Weber, 1922; French and Raven, 1959).

I We show how large of an “information inequality” supports expert power by itself.

5/31



Reconciling Theory with Practice

I We capture the decision making power of the expert.

I This power comes purely from their informational advantage. Is this the right explanation?

I “As a consequence of the information inequality, the patient must delegate to the physician much of his
freedom of choice.” — Kenneth Arrow (1963, p.964)

I Large information gaps are the source of expert power. (Weber, 1922; French and Raven, 1959).

I We show how large of an “information inequality” supports expert power by itself.

5/31



Reconciling Theory with Practice

I We capture the decision making power of the expert.

I This power comes purely from their informational advantage. Is this the right explanation?

I “As a consequence of the information inequality, the patient must delegate to the physician much of his
freedom of choice.” — Kenneth Arrow (1963, p.964)

I Large information gaps are the source of expert power. (Weber, 1922; French and Raven, 1959).

I We show how large of an “information inequality” supports expert power by itself.

5/31



Brownian Motion and Beyond

I Why Brownian Motion?

It is a tractable model with attractive properties.
I Parameterize how much is learned from the expert’s ideal action.
I Show how much learning is too much learning for supporting expert power.

I Brownian Motion, and its special features, are not necessary for expert power.

I We provide examples of other environments and extract the essential ingredient for expert power.

I A large ‘information inequality’ is the essential ingredient for expert power.
I Expert can reveal her most-preferred action without eliminating all uncertainty.
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1. Brownian Motion Model.

2. Results
I Decision making without the Expert.

I Main Result: Decision making with the Expert.

3. Extensions: Brownian Motion and Beyond.



The Model

I Players: Sender (the expert) and receiver (the decision maker).

I Actions and Messages: A = [0, q] for q ∈ R and r ∈M.

I Outcomes: ψ : A → R maps actions to outcomes.

I Preferences: uS(a) = −(ψ(a)− b)2 and uR(a) = −ψ(a)2.
I Results hold for weakly concave uR(·) and any uS(·) maximized at b.
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Timing of the Game

Sender observes
ψ : A → R.

Sender sends
message r ∈ M.

Receiver observes r.
Updates beliefs.

Receiver picks a ∈ A.
Payoffs realize.

I Solution Concept: Perfect Bayesian Equilibrium. Formal De�nitions
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Complex Environments in A Picture

action

I The mapping ψ : A → R is given by the path of a Brownian Motion. Details of Complex Environments

I Expert knows the realized mapping.

Receiver does not know the realized mapping.
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Receiver’s Beliefs
outcome

action

ψ(a) = ψ0 + µa + σW (a)

I Receiver knows mapping is Brownian Motion

with parameters: ψ0,
I Receiver Beliefs: ψ(a) ∼ N (ψ0 + µa, σ2a) and Cov(ψ(a), ψ(a′)) = σ2 min{a, a′}.
I Learning one point in the mapping 6= Learning the whole mapping. Details for Beliefs
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Simple v. Complex Environments

I Key Di�erence: How much the receiver learns from the expert’s most preferred action.

I This is captured with the “informational inequality” about ψ : A → R.

I Simple Environments: Relationship is known and outcomes are perfectly correlated.
I ψ(a) = θ − a where θ ∈ R is the private information of the expert.

ψ(a) = b⇒ θ = b + a⇒ ψ(a′) = (b + a)− a′

I Complex Environments: Relationship is unknown and outcomes are imperfectly correlated.
I ψ(·) is a Brownian Motion with parameters µ and σ:

ψ(a) = b⇒ ψ(a + x) ∼ b +N (µx, σ2x)
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1. Brownian Motion Model.

2. Results

I Decision making without the Expert.
I Main Result: Decision making with the Expert.

3. Extensions: Brownian Motion and Beyond.



Decision Making Without the Expert

outcome

0 action

E[ψ (a)] = ψ0 + µa

Var (ψ (a)) = σ2a

µ

ψ0

I Decisions without the expert involve a tradeo� between risk and return.

I a > 0 improves the outcome by µa (up until 0), but increases variance by σ2a.

I We call half of this ratio α = σ2

2|µ| as the risk complexity of the environment.

(ii) If α > ψ0 then the receiver chooses ano = 0. Details of the proof
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Lemma 1: Without additional information, receiver picks ano based on the risk complexity α and the
status-quo outcome ψ0:

(i) If α < ψ0 receiver chooses ano such that E[ψ (ano)] = α,

(ii) If α > ψ0 then the receiver chooses ano = 0. Details of the proof
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1. The Model: Introducing Complex Environments.

2. Results
I Decision making without the Expert.

I Main Result: Decision making with the Expert.

3. Extensions: Brownian Motion and Beyond.



Decision Making with the Expert

I We introduce the sender (expert) back into the game.
I The sender observes the realized outcomes ψ(·) and recommends an action r ∈ A.
I The receiver observes the recommendation and makes a choice a ∈ A.

I How much power does the sender have over the �nal decision?
I Full power if she can reveal her ideal action while keeping the receiver uncertain enough.
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The Sender’s Communication Strategy

I First-point strategy: Sender recommends the �rst of her optimal actions.

m∗(ψ) := min
a∈[0,q]

{
a : a ∈ arg max

a′∈A
uS(a′ | ψ)

}
.

I First-point equilibria: Sender uses the �rst-point strategy and the receiver accepts it.

I Sender’s incentive compatibility is immediate, the receiver’s incentive compatibility is subtle...

I What does the the receiver learn from the recommendation about the path?
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I What does the the receiver learn from the recommendation about the path?
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The Receiver’s Inference Problem

r∗r∗

Event =bEvent =b

outcome

0
action

ψ(0)

b

q

1. Event = b : Recommendation r∗ has outcome ψ(r∗) = b. Details for Event=b

I r∗ is the �rst-minimum.

I No informational spillover to the right beyond ψ(r∗) = b — Beliefs are neutral. Details for Beliefs
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The Receiver’s Inference Problem

r∗r∗

Event >b
outcome

0
action

ψ(0)

b

q

2. Event > b: Set of paths where ψ(r∗) > b. Details for Event>b

I r∗ is the �rst-minimum. And r∗ is also the last-minimum.

I Beliefs to the right are not neutral — Formally they follow a Brownian Meander process. Details for Beliefs
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The Receiver’s Inference Problem

r∗

Event =b

r∗

Event >b

r∗

outcome

0
action

ψ(0)

b

q

I Recommendation reveals precisely the sender’s optimal action but imprecisely its outcome.

I Receiver forms posterior over these events using the Bayes’ rule. Details of Bayes Updating

I A new identity: The joint distribution of the hitting time and the location of the minimum.
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E�cient Cheap Talk

Theorem 1. The �rst-point equilibrium exists if and only if q ≤ qmax
b :

(i) The misalignment is small compared to the risk complexity:

If 0 < b <
σ2

2|µ| = α then qmax
b =∞.

(ii) Or if the action space is not too large:

If ψ0 > b >
σ2

2|µ| = α then qmax
b ∈ R++.
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The Receiver’s Optimal Response: b ≤ α

outcome

0
action

ψ(0)

b
q

r∗

α = σ2

2|µ|

Event >b

Event =b
I Event > b =⇒ Receiver and sender have aligned action preferences.

I Event = b =⇒ Receiver and sender have misaligned action preferences.

I Logic of the ‘no expert’ result applies for deviations to right of the recommendation.
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The Receiver’s Optimal Response: b > α

outcome

0
action

ψ(0)

b
q

r∗

α = σ2

2|µ|

Event >b

Event =b
a∗

I For b > α, the receiver faces a trade-o�:
I In Event >b the receiver’s best response is a = r∗.
I In Event =b the receiver’s best response is a∗ such that E[ψ(a∗)] = α.

I E�cient cheap talk requires the receiver to choose exactly r∗ and nothing in between.
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Equilibrium Dominance

Event >b

Event =b

q′

outcome

0
action

ψ(0)

b
q

r∗

Before showing existence, we �rst explain how action space in�uences the receivers inference problem.

Lemma 2: If the �rst-point equilibrium exists forA = [0, q], then it exists forA′ = [0, q′] whenever q′ < q.

I Same �rst-minimum and weaker last-minimum requirement as q→ q′.

I No paths are eliminated as q→ q′. But paths are added to Event >b as q→ q′.
⇒ Probability of Event > b is decreasing in q. Details of the Argument
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Equilibrium Existence
outcome

0
action

b
q

α = σ2

2|µ|

ψ(0)

r∗

I Lemma 3: The �rst-point equilibrium exists for some A = [0, q] with q > 0.
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Equilibrium Existence
outcome

0
action

b
q

α = σ2

2|µ|

Event >b

Event =b

ψ(0)

r∗

I If q is not too large, the probability of Event > b is greater than Event = b. Outline of the Proof

I Moreover, if q is not too large the Brownian Meander dominates in expectation. Moments of Brownian Meander

I Equilibrium does not rely on risk aversion, although it makes achieving it easier.
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E�cient Cheap Talk

Theorem 1. The �rst-point equilibrium exists if and only if one of the following holds:

(i) Risk complexity is high and the expert’s recommendation is very hard to invert.

b ≤ σ2

2|µ|

(ii) The action space is not too large and there is su�cient action alignment with the expert.

A = [0, q] with q ≤ qmax
b .
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Comparative Statics I

How does the size of largest action space qmax
b change with the primitives of the environment?

C1: qmax
b is decreasing in b for b > α.
I Less likely to be ‘aligned’ (Event > b), and incremental gains are more attractive.

C2: qmax
b is increasing in µ.
I More likely to be ‘aligned’ (Event > b), and incremental gains are less attractive.

Increased σ has con�icting e�ects. Detailed e�ect of σ

I Our simulations suggests that qmax
b is generally increasing in σ > 0.
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Comparative Statics II

We also look for comparative statics for welfare within the �rst-point equilibrium (valid for q < qmax
b ).

C3: Both players utility strictly increase in q.
I Wider action space⇒ Path more likely to cross b⇒ Both players better o�.

C4: Receiver utility strictly decreases and sender utility strictly increases in b.
I Larger bias⇒ Path more likely to cross b & Equilibrium becomes worse for receiver (≥ b).

C5: Expected equilibrium outcome approaches to b as σ →∞.
I Very complex issues⇒More likely to cross b & Receiver doesn’t override⇒ Both better o�.
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Other E�cient Equilibria

Proposition 1: The only e�cient equilibria are sender optimal.

I E�cient equilibrium⇒ Equilibrium action distribution have full support.
I If not, then an open set S ⊆ A is omitted.
⇒ Positive probability that the ψ(·) attains a minimum weakly above b at some a ∈ S .
⇒ Recommending the minimum instead improves the payo� for both players.

I Full support action distribution⇒ Sender recommends own most preferred action.
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1. The Model: Introducing Complex Environments.

2. Results
I Decision making without the Expert.

I Main Result: Decision making with the Expert.

3. Extensions: Brownian Motion and Beyond.



Delegating v. Communicating?

Question: Should the principal of an organization hire an expert to do a task or to get advice?

I Simple environments: There is a trade-o� between information and control. (Dessein, 2002)

I Complex environments: If q ≤ qmax
b they are equivalent – either way control is lost.

Question: What if q > qmax
b ?

I Receiver can commit to taking actions from [0, qmax
b ] to facilitate e�cient communication.

I But it is better for him to delegate full decision making power.

I Restriction to [0, qmax
b ] creates action-alignment by making both players worse o�.
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Beyond Brownian Motion

I Brownian Motion is a tractable setup to illustrate how experts derive power in practice.

I Sender optimal and e�cient cheap talk can be supported in other environments.

I Action-alignment: The receiver and sender can have di�erent ideal actions for every state.
I Distribution: Joint distribution can be non-gaussian, non-markov or have dependent increments.
I Action/State Space: Discrete, continuum, or higher dimensional. Also they can be isomorphic.

I What is the common feature then? Expert advice is non-invertible.

Expert reveals her own optimal action 6⇒ Decision maker learns his optimal action.
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Minimally Complex Extension of Crawford-Sobel

outcome

0 action

ψ′(a) = (b − r∗) + a

ψ(a) = (b + r∗)− a

b

r∗
r∗ − b r∗ + b

1/1I Outcome Mapping: ψ(a) = ψ0 + a or ψ(a) = ψ0 − a with ψ0 ∈ R.

I E�cient equilibrium exists if and only if two states are equally likely.

I Players always have di�erent optimal actions.

Receiver faces directional uncertainty.
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Expert Advice in the Long-run

Question: How does the expert power change in long-run relationships?

I Decision maker learns the relationship between actions and outcomes over time.

I Expert can’t use her information e�ciently – communicates ine�ciently to keep the receiver uncertain.

I Decision maker’s ability to learn can make communication so ine�cient that she becomes worse o�
compared to single-period e�cient communication.
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Literature Review

I Cheap Talk (Crawford and Sobel, 1982).
I Invertible. Equilibrium: Expert sacri�ces power to make recommendations non-invertible.

I Bayesian Persuasion (Kamenica and Gentzkow, 2011).
I Commitment makes recommendation non-invertible. We get sender-optimal without commitment.

I Unknown bias (Morgan and Stocken, 2003).
I Non-invertible, but low residual uncertainty⇒ Equilibria are generally ine�cient.

I Discrete and Independent Actions (Aghion and Tirole, 1997)
I No informational spillover.

I Brownian Motion (Callander, 2008; Callander, Lambert, Matouschek, 2021; Dall’Ara, 2023).
I We study non-invertibility broadly, and how sender can shape information spillover.
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Conclusion

I In practice experts are “overtowering.’

In models they have no power and communication is ine�cient.

I We develop a novel and comprehensive framework that captures expert-power in practice.

I When the decision maker faces large “information inequality” the canonical results are reversed:

1. Experts have full power – they can implement her optimal action in equilibrium.
2. Communication is e�cient.

I Expert power comes from how much information remains private after the recommendation.
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outcome

0
action

ψ(0)

b

qα = σ2

2|µ|

Event >b

Event =b

r∗

Thank You!



Extra Slides



States and Beliefs

I ψ : A→ R and Ψ is the set of all ψ. Back to the Model

I It can be also thought as if ψ(·) is a known function of a random variable θ (with underlying probability
triple (Ω,F , ω)) privately observed by the sender.

I State is θ and state space is θ ∈ Θ.

I Receiver prior belief: ω(·) over Θ

I e.g. Θ = [0, 1] and ω is the uniform distribution.
I e.g. θ = C[0, q] and ω is the Wiener measure.

I We refer to the induced beliefs about ψ(·) instead of ω.

We call ω(· | ·), a(·),m(·) a Perfect Bayesian Equilibrium if

1. ω(ψ | r ∈ m(ψ)) is obtained via Bayes’ rule whenever possible,

2. a(r) ∈ arg maxa′∈A E[uR(a′, ψ) | ω(ψ | r ∈ m(ψ))] for every r ∈M,

3. m(ψ) ∈ arg maxr′∈M uS(a(r ′), ψ) for every ψ ∈ Ψ.
1/30



Simple Environments

I Players: Sender and Receiver. Back to Simple Environments

I Actions: A = R+.

I Outcomes: ψ(a) = θ − a common knowledge

I Sender’s private information: realized θ.

I Receiver’s prior: θ ∼ I ⊆ R+.

I Payo�s: uS(a) = −(ψ(a)− b)2 = −(θ − a− b)2, uR(a) = −(ψ(a))2 = −(θ − a)2.
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Simple Environments: Equilibrium

ψ(a) = θ − a

uR(a) = −(ψ(a))2 = −(θ − a)2

uS(a) = −(ψ(a)− b)2 = −(θ − a− b)2

outcome

action

b

θ4

θ3

θ2

θ1
r1 r2 r3

I All equilibria are partitional: m∗(θ) = ri if and only if θi ∈ [θi−1, θi]. Back to Simple Environments

I Sender incentive compatibility limits the number of partitions.
I If partitions are too small, types at the boundary are too close to each other.
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Complex Environments

I Players: Sender and Receiver. Back to Complex Environments

I Actions: A = R+.

I Outcomes:ψ(a) = ψ0 + µa + σW (a).
I The parameters ψ0, µ and σ common knowledge.

I Formally state is W (a) and state space is C[0, q].

I Sender’s private information: The realized path ψ(a).

I Receiver prior belief: ω(·) over C[0, q] given by the Wiener measure.
I We generally refer to the induced beliefs about ψ(·) instead of W (·).
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No Expert — Proof

Proof of Lemma 1
By the mean-variance representation of quadratic utility, the receiver’s expected utility is:

E[uR(a)] = − [ψ (0) + µa]
2 − σ2a.

The �rst and second order conditions for optimality are:

dE[uR(a)]

da
= −2µ [ψ (0) + µa]− σ2,

d2E[uR(a)]

da2 = −2µ2 ≤ 0.

The result follows from the �rst order condition. �

I We get a similar result for other weakly concave utility. Back to No Expert

I But α is no longer a constant threshold.
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Probabilities of Event = b

I We can de�ne Event= b using the hitting “action” (time). Back to Event=b

I First hitting action: τ(x) := inf{a ∈ [0, q] | ψ(a) = x}.

I Probability of the path �rst-hitting b < ψ0:

P(Event = b at a) = P(τ(b) ∈ da) =
ψ0 − b
σa
√
a
φ

(
ψ0 − b + µa

σ
√
a

)
da ∀x ∈ R+.
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Probabilities of Event > b

I First hitting action: τ(x) := inf{a ∈ [0, q] | ψ(a) = x}. Back to Event>b

I Minimum of the path ι(w, x): ι(w, x) = inf{ψ(a) | a ∈ [w, x]}.

I P(Event >b at m∗(ψ) = r∗) =
∫ ψ0
b P(τ(y) ∈ dr∗, ι(q) ∈ dy)dy.

I Using the Strong Markov Property of W (a):

P(Event >b at m∗(ψ) = r∗) =

∫ ψ(0)

b
P{τ(y) ∈ dr∗}︸ ︷︷ ︸

�rst-minimum

· P{ι(r∗, q) ∈ dy}︸ ︷︷ ︸
last-minimum

dy

r∗

Event > b

y

outcome

0
action

ψ(0)

b
τ(y) ∈ dr∗

ι(q) ∈ dy
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�rst-minimum

· P{ι(r∗, q) ∈ dy}︸ ︷︷ ︸
last-minimum

dy

r∗

Event > b

y

outcome

0
action

ψ(0)

b
τ(y) ∈ dr∗

ι(q − r∗) ∈ dy

7/30



Bayes Updating

I We are interested in P(Event =b | m∗(ψ) = r∗). Back to Receiver’s Inference

I Conditioning event m∗(ψ) ∈ dr∗ is the (disjoint) union of two events:
1. Event =b at m∗(ψ),
2. Event>b at m∗(ψ).

I Regular conditional probability can be obtained as follows:

P(Event =b | m∗(ψ) = r∗) =
P(Event =b at m∗(ψ) ∈ dr∗)

P(m∗(ψ) = r∗)

=
P(Event =b at m∗(ψ) ∈ dr∗)

P(Event =b at m∗(ψ) ∈ dr∗) + P(Event>b at m∗(ψ) ∈ dr∗)

=
P(τ(b) ∈ dr∗)

P(τ(b) ∈ dr∗) +
∫ ψ0
b P(τ(y) ∈ dr∗)P(ι(r∗, q) ∈ dy)dy

I Densities are well de�ned everywhere r∗ ∈ (0, q].
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Brownian Motion: Conditional Beliefs

outcome

0
action

Cov(ψ(a), ψ(a′)) = σ2 min{a, a′}

ψ0

b

drift µ

r∗

I The beliefs conditional on ψ(r∗) = y are: Back to Complex Environments Back to Inference

E[ψ(a)|ψ(r∗) = y] =

{
ψ0 + a

r∗ (y − ψ0) if a ≤ r∗

y + µa if a ≥ r∗

Var[ψ(a)|ψ(r∗) = y] =

{
σ2 a(r∗−a)

r∗ if a ≤ r∗

σ2(a− r∗) if a ≥ r∗
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Brownian Meander I

X(a)

0 a

−y

a

x

−(x + y)

I Rescale such that X(a) = ψ(a)− ψ0 = µa + σW (a). Back to Inference Back to Existence

P(X(a) ∈ dx | ι(q) ≥ −y) =
P(X(a) ∈ dx, ι(q) ≥ −y)

P(ι(q) ≥ −y)

=
P(X(a) ∈ dx, ι(a) ≥ −y, ι(q − a) ≥ −(x + y))

P(ι(q) ≥ −y)

P(X(a) ∈ dx | ι(q) ≥ −y) =
P(X(a) ∈ dx, ι(a) ≥ −y)P(ι(q − a) ≥ −(x + y))

P(ι(q) ≥ −y)
.
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Brownian Meander II

X(a)

0 a

−y

a

x

−(x + y)

−y → 0−

I Looking at lim−y→0− P(X(a) ∈ dx | ι(q) ≥ −y): Back to Inference Back to Existence

P(M(a, q) ∈ dx) =

√
qx

σa
√
a

exp
(
µ2q
2σ2

)
φ
(
µa−x
σ
√
a

)(
Φ
(

x+µ(q−a)
σ
√
q−a

)
− exp

(
− 2µx
σ2

)
Φ
(
−x+µ(q−a)
σ
√

q−a

))
(
µ
√
q exp

(
µ2q
2σ2

)
Φ(

µ
√
q

σ
) + σ√

2π

) dx.

I Details of the weak convergence follows from standard arguments.
I See Durrett et al. (1977) and Iafrate and Orsingher (2020) for the details.
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Brownian Meander II

X(a)

0 a

−y

a

x

−(x + y)

−y → 0−

I Looking at lim−y→0− P(X(a) ∈ dx | ι(q) ≥ −y): Back to Inference Back to Existence

P(M(a, q) ∈ dx) =

√
qx

σa
√
a

exp
(
µ2q
2σ2

)
φ
(
µa−x
σ
√
a

)(
Φ
(

x+µ(q−a)
σ
√
q−a

)
− exp

(
− 2µx
σ2

)
Φ
(
−x+µ(q−a)
σ
√

q−a

))
(
µ
√
q exp

(
µ2q
2σ2

)
Φ(

µ
√
q

σ
) + σ√

2π

) dx.

I It coincides with equation (1.4) in Iafrate and Orsingher (2020) when σ = 1.
I It coincides with Rayleigh distribution whenever µ = 0, σ = 1 and a = q.
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Moments of Brownian Meander

I We characterize the distribution of M(a, q) given its terminal value. Back to Existence

I Special case of µ = 0 and σ = 1 is analyzed in Devroye (2010) and Riedel (2021).

I This is obtained by the limit: lim−y→0− P(X(a) ∈ dx | X(q) = c, ι(q) ≥ −y):

P(M(a, q) ∈ dx | M(q, q) = c) =
xq
√
q

ca
√
a
√
q − aσ

φ
 x − ca

q√
a
q
√
q − aσ

− φ
 x + ca

q√
a
q
√
q − aσ

 dx

E[M(a, q)|M(q, q) = c] =
σ2(q − a) + c2a

q

c
erf

(
c
√
a

σ
√

2q(q − a)

)
+ exp

( −c2a
2q(q − a)σ2

)√
2a(q − a)

qπ
σ

E[M2(a, q) | M(q, q) = c] =
3(q − a)a

q
σ2 +

c2a2

q2

I It follows that that lima→0+
∂
∂aE[M(a, q)|M(q, q) = c] =∞.
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Equilibrium Dominance

I First hitting action: τ(x) := inf{a ∈ [0, q] | ψ(a) = x}. Back to Lemma 2

I Minimum of the path ι(w, x): ι(w, x) = inf{ψ(a) | a ∈ [w, x]}.
I We have the probabilities given by:

P(Event = b at r∗) = P(τ(b) ∈ dr∗)) =
ψ0 − b
σr∗
√
r∗
φ

(
ψ0 − b + µr∗

σ
√
r∗

)
dr∗ ∀x ∈ R+

P(Event >b at r∗) =

∫ ψ(0)

b
P{τ(y) ∈ dr∗}︸ ︷︷ ︸

�rst-minimum

· P{ι(r∗, q) ∈ dy}︸ ︷︷ ︸
last-minimum

dy.P{ι(r∗, q) ∈ dy}

I As q gets smaller, τ(b) ∈ dr∗ is constant and P{ι(r∗, q) ∈ dy} is increasing.

I Thus, P(Event =b | m∗(ψ) decreasing:

P(Event =b | m∗(ψ) = r∗) =
P(Event =b at m∗(ψ) ∈ dr∗)

P(Event =b at m∗(ψ) ∈ dr∗) + P(Event>b at m∗(ψ) ∈ dr∗)
.
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Equilibrium Existence

Change in expected outcome for a deviation to r∗ + a′ is given by: Back to Existence

∆(a′, r∗, q) = P(Event =b | m∗(ψ) = r∗)(µa′) + P(Event >b | m∗(ψ) = r∗)E[M(a′, q − r∗)]

1. We showed that P(Event =b | m∗(ψ) = r∗) decreasing.

2. Moreover, P(Event =b | m∗(ψ) = r∗)→ 1 for every as r∗ → 0.

3. We show that lima→0+
∂
∂aE[M(a, q)|M(q, q) = c] =∞ for every q∗.

I If q→ 0, then max{a, r∗} → 0. So limq→0 ∆(a′, r∗, q) > 0

I Thus, for some q̄ > 0 we have that ∆(a′, r∗, q̄) for every a′, r∗, q < q̄.

I Note that q̄ 6= qbmax: qbmax is the largest solution q is the counterpart for expected payo�.
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Action Space v. Complexity

I We develop our analysis by varying the size of the action space instead of σ or α. Back to Size of the Action Space

I Expert derives power from the complexity of the environment but not in direct proportion to
complexity.

I Increased σ has con�icting e�ects.

1. Changes what the receiver infers from the recommendation
I Probability of Event= b is non-monotone, and increasing on average.
I Makes it harder to support the equilibrium.

2. Changes the shape of receiver uncertainty about other actions.
I Expectations for deviations in Event > b becomes more steep.
I Riskiness of deviations increase in both events.
I Makes it easier to sustain.

I Drift µ closer to 0 also decreases the probability of Event > b.
I Equilibrium is always easier to support.
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Extensions: Robustness within BM



Extensions within Brownian Motion

I Weakly concave utility with an unique maximum. Details for the Extension

I The α threshold is not a constant — Everything else goes through.

I Very large bias: b > ψ0. Demonstration of Large Bias

I Interests are diametrically opposed, only equilibria are babbling.

I Negative Bias: b < 0. Demonstration of Negative Bias

I In event = b, receiver knows there is an action to the left that gives his ideal.

I Actions to the left of the status quo. Demonstration of Actions to the Left

I Recommendations to the left of status quo are easier to implement due to µ < 0.
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Beyond Quadratic Utilities
Back to Extensions

Sketch of the Idea
Say that the receiver’s utility is separable in mean µ(a) = E[ψ(a)] and variance σ(a) = Var[ψ(a)]:

E[uR(a)] = v(µ(a))− w(σ(a)).

The �rst and second order conditions for optimality are:

dE[uR(a)]

da
= µ′(a)v′(µ(a))− σ′(a)w(σ(a)) = 0

d2E[uR(a)]

da2 µ′′(a)v′(µ(a)) + µ′(a)2v′′(µ(a))− σ′′(a)w′(σ(a))− σ′(x)2w′′(σ(x)) ≤ 0

a = µ−1
(

(v′)−1
(
σ′(a)v′(σ(a))

µ′(a)

))
The result follows from the �rst order condition under suitable conditions on the curvature of µ(a) and σ(a).
e.g. µ′(x) < 0, µ′′(x) ≤ 0 and σ′(x) > 0, σ′′(x) > 0 and w′′(x), v′′(x) ≤ 0 �
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Very Large Bias
outcome

0
action

b

drift µ

α

ano

I Interests are fully misaligned. Back to Extensions

I If an outcome is better than the status quo for the sender is worse for the receiver.

I Only equilibria are babbling.
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Negative Bias
outcome

0
action

b

Event>0

r∗

I Event > 0 works the same way. Back to Extensions

I In Event ≤ 0, now there is a pro�table deviation is now to the left.

I A similar upper bound like qbmax can be constructed.
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Negative Bias
outcome

0
action

Even t≤ 0

Event>0

b drift µ

r∗

I Event > 0 works the same way. Back to Extensions
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Negative Bias
outcome

0
action

Event ≤ 0

Event>0

b

r∗
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To the Left of Status quo
outcome

0
actionr∗

b

I If the recommendation is r∗ > 0:

It is the same problem and qbmax works.

Back to Extensions

I If the recommendation is r∗ < 0:
I Drift µ has the opposite e�ect and the Receiver IC is always satis�ed when r∗.
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Extensions: Examples Beyond BM



Conditions for Expert Power I
Suppose that the sender uses m : ψ → A that precisely reveals his optimal action.

I Under what conditions does communication imperfectly reveal the state?

1. Partial Invertibility: Multiple states are consistent with recommendation.

|m−1(r)| > 1 ∀r ∈ A

I When is the receiver has uncertainty have about his best response?

2. Response Uncertainty: Receiver has distinct best responses to those states.⋂
ψ′∈m−1(r)

arg max
a∈A

uR(a, ψ′) = ∅ ∀r ∈ A

I When does that lead the receiver to accept the sender’s optimal action?

3. Recommendation Acceptance: Receiver’s incentive compatibility is satis�ed.

r ∈ arg max
a∈A

E[uR(a, ψ) | ψ ∈ m−1(r)] ∀r ∈ m−1(Ψ)

Back to Extensions
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I When is the receiver has uncertainty have about his best response?

2. Response Uncertainty: Receiver has distinct best responses to those states.⋂
ψ′∈m−1(r)

arg max
a∈A

uR(a, ψ′) = ∅ ∀r ∈ A

I When does that lead the receiver to accept the sender’s optimal action?

3. Recommendation Acceptance: Receiver’s incentive compatibility is satis�ed.

r ∈ arg max
a∈A

E[uR(a, ψ) | ψ ∈ m−1(r)] ∀r ∈ m−1(Ψ)
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Conditions for Expert Power II

1. Partial Invertibility: Multiple states are consistent with recommendation.

2. Response Uncertainty: Receiver has distinct best responses to those states.

3. Recommendation Acceptance: Receiver’s incentive compatibility is satis�ed.

I First-point strategy in Brownian Motion environment satis�es (1) and (2).
I First-point strategy also satis�es (3) if action space is narrow (q < qbmax).

I E�cient strategies in unknown bias models satisfy (1) and (2) but fail (3).

I E�cient strategies in canonical cheap talk fail (1).
I Partition strategies in canonical cheap talk satisfy (1) and (2).
I Partition strategies also satisfy (3) if partitions are large enough. Back to Extensions
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Misalignment Without Directional Uncertainty

outcome

0 action

b

r∗

I For each a ∈ A = Z, there are two states ψ and ψ′:
I ψ(a) = b, ψ(a + 1) = 0 and ψ(a′) = 100b ∀a′ ∈ A \ {a, a + 1}.

I ψ′(a) = b, ψ′(a + 2) = 0 and ψ′(a′) = 100b ∀a′ ∈ A \ {a, a + 2}.
I E�cient equilibrium exists if neither states dominate for any action.

I Receiver is never aligned with the sender and has no directional uncertainty.
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Orstein-Uhlenbeck: Mean-Reversion

outcome

0 action

b

ψ(0)

r∗

1/1

I The mapping is Ornstein-Uhlenbeck mean-reverting to ψ(0). Details of OU process

I Expected outcome always points toward ψ(0).

I First-point equilibrium exists ∀b ∈ [0, ψ(0)) and ∀q ∈ R.
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Wiener State Space: Mean Reversion

I ψ(a) is the solution to the stochastic di�erential equation: Back to Extensions

dψ(a) = −κ (ψ(0)− ψ(a)) da + σdW (a)

I κ is the mean-reversion coe�cient, and σ is the volatility term.

I Environment has the same state space as the Brownian environment.

I Di�ers in how the states are translated into outcomes via the outcome mappings.

I Deviations to a < r∗ are worse for the receiver by the continuity of OU process.
I For deviations a > r∗:

E[ψ(a) | m∗(ψ) = r∗] = ψ(0)− (ψ(0)− ψ(r∗)) exp(−κ(a− r∗))︸ ︷︷ ︸
<1︸ ︷︷ ︸

>ψ(r∗)

Var(ψ(a) | m∗(ψ) = r∗) =
σ2

2κ (1− exp[−2κ(a− r∗)])
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Wiener State Space: Non-Markovian

Back

I We can think of fractional BM as keeping the drift same and
rede�ning the Cov (ψ(a), ψ(a′)) by:

σ2 1
2
(
|a|2H + |a′|2H − |a− a′|2H

)
I H is the Hurst index describes the raggedness of the

resultant motion:
I If H = 0.5 then the state is Wiener process;
I If H > 0.5 then the increments of the process are positively

correlated;
I If H < 0.5 then the increments of the process are negatively

correlated.

I H changes the shape of the variance: Linear, Convex or
Concave.
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Wiener State Space: Non-Gaussian

I ψ(a) is geometric Brownian Motion, which is the solution
to the di�erential equation:

dψ(a) = µψ(a)dt + σψ(a)dW (a).

I The solution is given by:

ψ(a) = ψ0 exp

((
µ− σ2

2

)
t + σW (a)

)
.

I ψ(a) is log-normally distributed with:

E[ψ(a)] = [ψ0 exp(µa)]

Var(ψ(a)) = ψ2
0 exp(2µa)

(
exp(σ2a)− 1

)
.

Back to Extensions
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Wiener State Space: Discontinuous
outcome

0
action

I ψ(a) = Wiener process W (a) + compound Poisson process Y(a): Back to Extensions

ψ(a) = µt + σW (a) + Y(a)

I If Y(a) ≥ 0, then our techniques based on �rst hitting times directly apply.
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Wiener State Space: Higher Dimensions
Back to Extensions

y

x

ψ

Figure: Brownian Sheet ψ : X × Y → R.
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Wiener State Space: More Knowledge

outcome

0 action

b

ψ(0)

ψ(q)

q

1/1

I Consider the Brownian Motion environment. Back to Extensions

I But, the receiver begins knowing a second point action q where ψ(q) ≥ ψ(0).

I Similar to the OU process
I Easy to satisfy the �rst-point equilibrium.
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